

Solid-State Relays

Accessories

	Description	Pkg. Qty.	Cat. No.	Factorystocked Item
	Screw Terminal Socket - Panel or DIN Rail Mounting 8-blade miniature socket for use with DPDT HF relays. Order must be for 10 sockets or multiples of 10 .	10	700-HN116	\checkmark
0	DIN Rail Mounting Pack Standard $35 \times 7.5 \mathrm{~mm}$ DIN Rail, 1 meter long, 10 rails per package. Order must be for 10 rails or multiples of 10 .	10	199-DR1	\checkmark
	Pre-printed identification tags - contains 10 sheets of pre-printed and blank tags. Each sheet contains 13 sets of the markings CR...9CR, TR...9TR, M...9M, F, R, 1S, and 117 blank tags. Tags are peel-off with sticky backing for easy placement on relays.	10	700-N40	\checkmark
	Blank identification tags - contains 10 sheets of blank identification tags for customer specialized printing. Each sheet contains 546 blank tags. Tags are peel-off with sticky backing for easy placement on relays.	10	700-N41	\checkmark
	Retainer Clip for Cat. No. 700-HN103 and -HN128 Sockets with 700-SF Relays and Cat. No. 700-HN116 Sockets Secures relay in socket. Order must be for 10 clips or multiples of 10.	10	700-HN114B¢	\checkmark

(1) Bulletin $700-$ SF must use $700-\mathrm{HN} 114$ series B retainer clip.

Control/Input Ratings							
Cat. No.	Rated Control Voltage	Operating Control Voltage Range	Impedance	Control Voltage Levels			
				Pick-up Voltage		Drop-out Voltage	
700-SFZY3Z25	5...24V DC	4...28V DC	15 mA max. 1	4V DC max.		1V DC min.	
700-SFTY3Z24	24V DC	19.2..28.8V DC	$2 \mathrm{k} \Omega \pm 20 \%$	19.2V DC max.		1V DC min.	
700-SFNY3Z25	5...24V DC	4...28V DC	$1.5 \mathrm{k} \Omega+20 \% /-10 \%$ (2)	4V DC max.		1V DC min.	
Load/Output Ratings							
Cat. No.	Applicable Load						
	Rated Load Voltage		Load Voltage Range	Continuous Load Current (Resistive)	Max. Inrush Current 3		
-	-		-	Max. 4		-	
700-SFZY3Z25	100...240V AC		75...264V AC	3 A	45 A @ $50 / 60 \mathrm{~Hz}$, 1 cycle		
700-SFTY3Z24			3 A				
700-SFNY3Z25	4...48V DC			3...52.8V DC	3 A	$18 \mathrm{~A}(10 \mathrm{~ms})$	
Characteristics							
Cat. No.		700-SFZY3Z25	700-SFTY32...		700-SFNY3Z25		
Load Switching Method/Device		Triac	Transistor				
Pick-up time		1/2 cycle of load power source + 1 ms max.	1 ms max .		0.5 ms max .		
Drop-out time		1/2 of output switching element cycle of load power source + 1 ms max .			2 ms max .		
Output ON voltage drop		1.6 V (RMS) max.			1.5 V max.		
Output Leakage current		5 mA max. (at 100 V AC); 10 mA max. (at 200V AC)	2.5 mA max. (at 100V AC); 5 mA max. (at 200V AC)		5 mA max. (at 50V DC)		
Output $\mathrm{V}_{\text {drm }} \mathrm{V}_{\text {CEO }}(\mathrm{V}$)		600	600	80			
Output di/dt (A/uS)		50	50	-			
Output dv/dt (V/uS)		250	250	-			
Output 12t (A²S)		18	18	-			
Output Tj (${ }^{\circ} \mathrm{C}$) (max.)		125	125	150			
Insulation resistance		$100 \mathrm{M} \Omega \mathrm{min}$. (at 500 V DC)					
Dielectric strength		1,500V AC, $50 / 60 \mathrm{~Hz}$ for 1 min .					
Vibration resistance (max.)		$10 . .55 \mathrm{~Hz}, 1.5 \mathrm{~mm}$ double amplitude (10 G)					
Shock resistance (max.)		$1,000 \mathrm{~m} / \mathrm{s}^{2}(100 \mathrm{G})$					
Ambient temperature		Operating: $-30 \ldots 80^{\circ} \mathrm{C}\left(-22 \ldots 176^{\circ} \mathrm{F}\right)$ with no icing or condensation Storage: $-30 \ldots 100^{\circ} \mathrm{C}\left(-22 \ldots 212^{\circ} \mathrm{F}\right)$ with no icing or condensation					
Ambient humidity		45...85\% (no condensation)					
Standards		UL508, CSA C22.2, CE					
Weight		Approx. 50 g					

[^0](2) Input impedance reaches its maximum at the operating voltage.
(3) If the SSR operation is continuous ON/OFF, this value should be reduced by 50%. Refer to the "Inrush Current Resistivity" graphs on page 50 for more details.
(4) Refer to "Load Current vs. Ambient Temperature Characteristics" on page 50 for additional load current details.

Bulletin 700-SF

Solid-State Relays

Specifications, Continued/Approximate Dimensions

Note: These data are non-repetitive. Keep the inrush current to half the rated value if it occurs repetitively. Inrush current resistivity is the ability of an SSR to withstand a large surge current for a short period of time. Surges are considered non-repetitive (max. repeatability once every $2 \ldots 5$ seconds). Keep the inrush current to half the rated value if it occurs repetitively. Exceeding the non-repetitive inrush current will damage the SSR.

(1) Inrush current resistivity is the ability of an SSR to withstand a large surge current for a short period of time. Surges are considered non-repetitive (max. repeatability once every $2 \ldots 5$ seconds). Keep the inrush current to half the rated value if it occurs repetitively. Exceeding the non-repetitive inrush current will damage the SSR.

Approximate Dimensions
All units are in millimeters unless otherwise indicated. Dimensions are not intended for manufacturing purposes.

Terminal Arrangement/ Internal Connections (Bottom View)

Note: The $700-\mathrm{SF}$ is compatible with the $700-\mathrm{HN} 116$ socket.
Basic Application Considerations of Bulletin 700-SF

High Density Mounting of Multiple SSRs

If multiple SSRs are mounted side by side be aware that the outer case wall of the SSR acts as a radiator. The SSR case serves to dissipate heat. Install the relays so that they are adequately ventilated. If poor ventilation is unavoidable, reduce the load current by half.

Connection

For DC load switching, the 700-SF SSR will operate properly if the load is connected to either the positive or negative load terminals.

Protective Component To Extend SSR Life

When controlling AC inductive loads, connect an inrush/surge absorbing device (varistor) across the SSR load terminals. If the SSR has built-in surge suppression (Bulletins $700-$ SE and $700-\mathrm{SH}$) and additional surge suppression is required, connect the varistor across the terminals of the load device. Select a varistor that meets the conditions of the load voltage outlined in the table below.

Load Voltage	Varistor Voltage	Varistor Surge Resistance
$100 \ldots 120 \mathrm{~V} \mathrm{AC}$	$240 \ldots 270 \mathrm{~V}$	1000 A min.$$
$200 \ldots 240 \mathrm{~V} \mathrm{AC}$	$440 \ldots 470 \mathrm{~V}$	
$380 \ldots 480 \mathrm{~V} \mathrm{AC}$	$820 \ldots 1000 \mathrm{~V}$	

Note: For additional details applying solid-state relays, refer to pub. number 700-AT001A-EN-E, Solid-State Relay Application Guide. Document available at http://www.theautomationbookstore.com.

[^0]: (1) With constant current input circuit system, SSR impedance varies with a change in input voltage.

