MORNSUN

G_D-1W & H_D-1W Series *1W, FIXED INPUT, 6000V ISOLATED & UNREGULATED DUAL/SINGLE OUTPUT DC-DC CONVERTER*

country patent protection RoHS

FEATURES

Small Footprint DIP Package 6KVDC Isolation Temperature Range: -40°C to+85°C No Heat Sink Require No External Component Require Internal SMD Construction Industry Standard Pinout RoHS Compliance

APPLICATIONS

The G_D-1W & H_D-1W Series are specially designed for applications where a group of polar power supplies are isolated from the input power supply in a distributed power supply system on a circuit board.

These products apply to:

 Where the voltage of the input power supply is fixed (voltage variation ≤±10%);

 Where isolation is necessary between input and output (isolation voltage ≤6000VDC);

 Where the regulation of the output voltage and the output ripple noise are not demanded.
Such as: purely digital circuits, ordinary low

frequency analog circuits, and IGBT power device driving circuits.

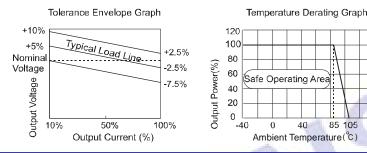
HU5U5D-17V	
	—Rated Power —Package Style —Output Voltage
	—Input Voltage
	-Product Series

MORNSUN Science & Technology co.,Ltd. Address:2th floor 6th building, Hangzhou Industrial District, Guangzhou, China Tel: 86-20-38601850 Fax: 86-20-38601272 http://www.mornsun-power.com

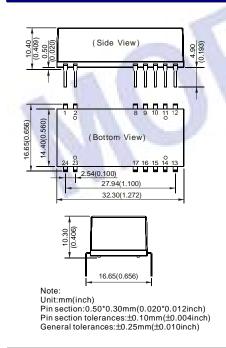
	multi-
PRODUCT PROGRAM	

PRODUCT							
	Input			Output	Efficiency		
Part Number	Voltage (VDC)		Voltage	Currer	Current (mA)		Certificate
	Nominal	Range	(VDC)	Max	Min	(%, Typ)	
H0505D-1W			5	200	20	70	UL
H0509D-1W			9	111	12	72	UL
H0512D-1W			12	84	9	73	UL
H0515D-1W*	5	4.5-5.5	15	67	7	74	UL
G0505D-1W	5	4.5-5.5	±5	±100	±10	70	UL
G0509D-1W			±9	±56	±6	71	UL
G0512D-1W			±12	±42	±5	72	UL
G0515D-1W*			±15	±33	±4	73	UL
H1205D-1W			5	200	20	70	UL
H1209D-1W	1	1	9	111	12	71	UL
H1212D-1W			12	84	9	72	UL
H1215D-1W	12	10 0 10 0	15	67	7	74	UL
G1205D-1W	12	10.8-13.2	±5	±100	±10	70	UL
G1209D-1W	5		±9	±56	±6	71	UL
G1212D-1W			±12	±42	±5	72	UL
G1215D-1W			±15	±33	±4	75	UL

ISOLATION SPECIFICATIONS							
Item	Test Conditions	Min	Тур	Max	Units		
Isolation voltage	Tested for 1 minute and 1mA max	6000			VDC		
Isolation resistance	Test at 1000VDC	1000			MΩ		
Isolation capacitance			3.5		pF		


COMMON SPECIF	ICATIONS				
Item	Test Conditions	Min	Тур	Max	Units
Storage humidity range				95	%
Operating temperature		-40		85	
Storage temperature		-55		125	0°
Temp. rise at full load			15	30	
Lead temperature	1.5mm from case for 10 seconds			300	1
	5V input voltage			1	s
Short circuit protection*	12V input voltage	Continuous			
Cooling		Free air convection			
Case material		Plastic(UL94-V0)			
MTBF		3500			K hours
Weight			8.2		g

OUTPUT SPECIFICATIONS							
Item	Test conditions		Min	Тур	Max	Units	
Output power					1	W	
Line regulation	For Vin change of			±1.2			
	10% to 100% load	5V output		10	15		
Load regulation	10% to 100% load		8.3	15	%		
	10% to 100% load		6.8	15			
	10% to 100% load		6.3	15			
Output voltage accuracy		See tolerance enve					
Temperature drift	100% full load				0.03	%/°C	
Ripple & Noise*	20MHz Bandwidth	I		150	200	mVp-p	
Switching frequency	Full load	5V input		250		KHz	
Switching nequency	nominal input	12V input		50			


*Test ripple and noise by "parallel cable" method. See detailed operation instructions at Testing of Power Converter section, application notes.

Note: Dual output models unbalanced load: ±5%

TYPICAL CHARACTERISTICS

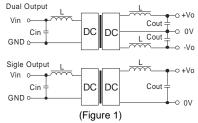
OUTLINE DIMENSIONS & PIN CONNECTIONS

First Angle Projection 🚭 🏶 **RECOMMENDED FOOTPRINT**

Top view, grid:2.54mm(0.1inch) diameter:1.00mm(0.039inch)

Single/Dual Ouput									
31									
1									
i									
1									
i									
21									
ľ									

FOOTPRINT DETAILS						
Pin	Single	Dual				
1	1 Vin					
2	GND	GND				
8, 17	NC	-Vo				
10, 15	0V					
12,13	12,13 +Vo					
Others	NC					
NC: No co	nnection					


APPLICATION NOTE

Requirement on output load

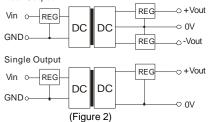
To ensure this module can operate efficiently and reliably, During operation, the minimum output load is not less than 10% of the full load, and that this product should never be operated under no load! If the actual output power is very small, please connect a resistor with proper resistance at the output end in parallel to increase the load, or use our company's products with a lower rated output power.

Recommended testing and application circuit

If you want to further decrease the input/output ripple, an "LC" filtering network may be connected to the input and output ends of the DC/DC converter, see (Figure 1).

It should also be noted that the inductance and the frequency of the "LC" filtering network should be staggered with the DC/DC frequency to avoid mutual interference. However, the capacitance of the output filter capacitor must be proper. If the capacitance is too big, a startup problem might arise. For every channel of output, provided the safe and reliable operation is ensured, the greatest capacitance of its filter capacitor sees (Table 1).

pacitatice of its	men	capacitor	sees	(lable	I
	~ ADA	TTOP TA	RIE	Table 1	١


	EXTERNAL CAPACITOR TABLE (Table 1)									
	Vin	Cin	Single	Cout	Dual	Cout				
	(VDC)	(uF)	Vout	(uF)	Vout	(uF)				
	Sec.		(VDC)		(VDC)					
	5	4.7	5	10	±5	4.7				
i.	12	2.2	9	4.7	±9	2.2				
	24	1	12	2.2	±12	1				
	-	-	15	1	±15	1				

It's not recommend to connect any external capacitor in the application field with less than 0.5 watt output.

Output Voltage Regulation and Over-voltage **Protection Circuit**

The simplest device for output voltage regulation, over-voltage and over-current protection is a linear voltage regulator with overheat protection that is connected to the input or output end in series (Figure 2).

Dual Output

Overload Protection

Under normal operating conditions, the output circuit of these products has no protection against overload. The simplest method is to connect a self-recovery fuse in series at the input end or add a circuit breaker to the circuit.

No parallel connection or plug and play

Note:

- 1.All specifications measured at Ta=25°C, humidity<75%, nominal input voltage and rated output load unless otherwise specified.
- 2.Only typical models listed, other models may be different, please contact our technical person for more details
- 3. Operation under minimum load will not damage the converter; However, they may not meet all specification listed.

	12	14 Z	13			1	1
	!						
	i						
-	1						Γ