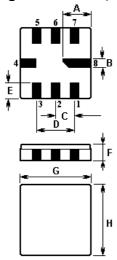


Approved by:
Checked by:
Issued by:

SPECIFICATION


PRODUCT: SAW RESONATOR

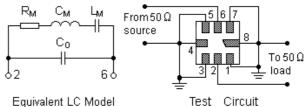
MODEL: HR426 QCC8C

HOPE MICROELECTRONICS CO.,LIMITED

The HR426 is a true one-port, surface-acoustic-wave (**SAW**) resonator in a surface-mount ceramic **QCC8C** case. It provides reliable, fundamental-mode, quartz frequency stabilization i.e. in transmitters or local oscillators operating at **426.000** MHz.

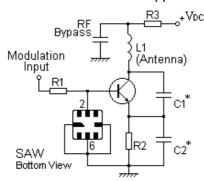
1.Package Dimension (QCC8C)

Pin	Configuration			
2	Terminal1			
6	Terminal2			
4,8	Case Ground			
1,3,5,7	Empty			

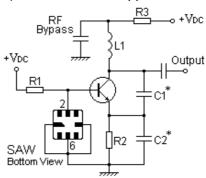

Sign	Data (unit: mm)	Sign Data (unit: mm)		
Α	2.08	Е	1.2	
В	0.6	F	1.35	
С	1.27	G	5.0	
D	2.54	Н	5.0	

2.Marking

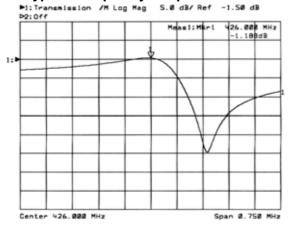
HR426

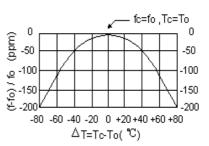

Laser Marking

3. Equivalent LC Model and Test Circuit



4.Typical Application Circuits


1) Low-Power Transmitter Application


2) Local Oscillator Application

5. Typical Frequency Response

6.Temperature Characteristics

The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

7.Performance

7-1.Maximum Ratings

Rating		Value	Unit
CW RF Power Dissipation	Р	0	dBm
DC Voltage Between Terminals	V_{DC}	± 30	V
Storage Temperature Range	$T_{ m stg}$	-40 to +85	
Operating Temperature Range	T_{A}	-10 to +60	

7-2. Electronic Characteristics

	Characteristic	Sym	Minimum	Typical	Maximum	Unit
Center Frequency (+25)	Absolute Frequency	f _C	425.925		426.075	MHz
	Tolerance from 426.000 MHz	Δf_{C}		± 75		kHz
Insertion Loss		ΙL		1.5	2.0	dB
Quality Factor	Unloaded Q	Q_U		7,500		
	50 Ω Loaded Q	Q _L		1,200		
Temperature Stability	Turnover Temperature	T ₀	25		55	
	Turnover Frequency	f ₀		fc		kHz
	Frequency Temperature Coefficient	FTC		0.032		ppm/ ²
Frequency Aging	Absolute Value during the First Year	fA		10		ppm/yr
DC Insulation Resis	tance Between Any Two Terminals		1.0			MΩ
RF Equivalent RLC Model	Motional Resistance	R _M		19	26	Ω
	Motional Inductance	L _M		53.3776		μН
	Motional Capacitance	См		2.6176		fF
	Shunt Static Capacitance	C ₀	2.3	2.6	2.9	pF

(i) CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

C 2003. All Rights Reserved.

- 1. The center frequency, f_C, is measured at the minimum IL point with the resonator in the 50 test system.
- 2. Unless noted otherwise, case temperature $T_C = +25^{\circ}C \pm 2^{\circ}C$.
- Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 4. Turnover temperature, T_0 , is the temperature of maximum (or turnover) frequency, f_0 . The nominal frequency at any case temperature, T_0 , may be calculated from: $f = f_0 [1 FTC (T_0 T_0)^2]$.
- 5. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C₀ is the measured static (nonmotional) capacitance between the two terminals. The measurement includes case parasitic capacitance.
- 6. Derived mathematically from one or more of the following directly measured parameters: f_C , IL, 3 dB bandwidth, f_C versus T_C , and C_0 .
- The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 8. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 9. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 10. For questions on technology, prices and delivery, please contact our sales offices or email sales@hoperf.om.