
Voltage Transducer LV 25-1000

For the electronic measurement of voltages: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit).

$V_{PN} = 1000 V$

Electrical data

$egin{aligned} oldsymbol{V}_{PN} \ oldsymbol{V}_{P} \ oldsymbol{I}_{PN} \ oldsymbol{R}_{M} \end{aligned}$	Primary nominal r.m.s. voltage Primary voltage, measuring range Primary nominal r.m.s. current Measuring resistance		1000 0 ± 1 8 R _{M min}	500 R _{Mmax}	V V mA
	with $\pm 12 \text{ V}$ with $\pm 15 \text{ V}$	@ ±1000 V max @ ±1500 V max @ ±1000 V max	30 30 100	200 100 320	Ω Ω
I _{SN} K _N V _C I _C V _d	Secondary nominal r.m.s. Conversion ratio Supply voltage (± 5 %) Current consumption R.m.s. voltage for AC isol		± 12	180 7/25 mA 15 15V)+ I _s	Ω mA V mA kV

Accuracy - Dynamic performance data

X _G	Overall Accuracy @ \mathbf{V}_{PN} , $\mathbf{T}_{A} = 25^{\circ} \mathrm{C}$ Linearity		± 0.8 < 0.2		% %
I _o	Offset current @ $\mathbf{I}_{\rm p} = 0$, $\mathbf{T}_{\rm A} = 25^{\circ}{\rm C}$ Thermal drift of $\mathbf{I}_{\rm O}$	- 25°C + 25°C + 25°C + 70°C	Typ = 20.10 = 20.10	Max ± 0.15 ± 0.60 ± 0.60	mA mA
t _r	Response time @ 90 % of $\mathbf{V}_{\mathrm{P\ max}}$		40		μs

General data

\mathbf{T}_{A}	Ambient operating temperature	- 25 + 70	°C
T _s	Ambient storage temperature	- 40 + 85	°C
N	Turns ratio	3100 : 1000	
Р	Total primary power loss	8	W
$\mathbf{R}_{_{1}}$	Primary resistance @ T _A = 25°C	125	$k\Omega$
$\mathbf{R}_{\mathrm{s}}^{'}$	Secondary coil resistance @ T _A = 70°C	110	Ω
m	Mass	60	g
	Standards 2)	EN 50178	

Notes: 1) Between primary and secondary

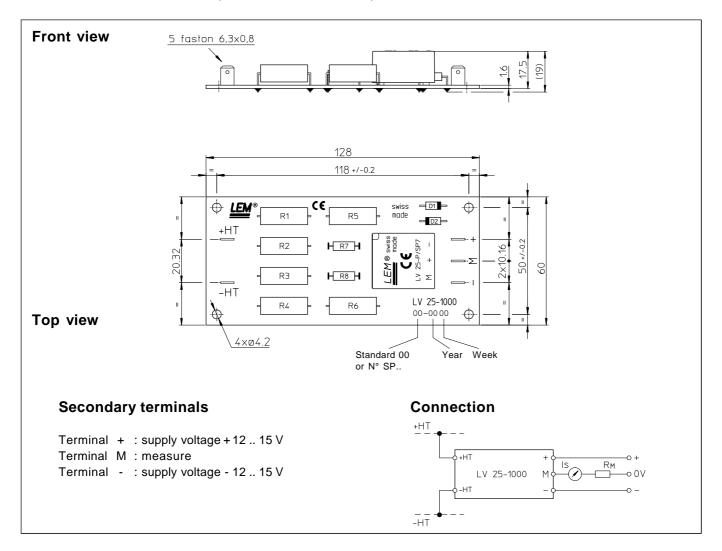
Features

- Closed loop (compensated) voltage transducer using the Hall effect
- Transducer with insulated plastic case recognized according to UL 94-V0
- Primary resistor R₁ and transducer mounted on printed circuit board 128 x 60 mm.

Advantages

- Excellent accuracy
- Very good linearity
- Low thermal drift
- High immunity to external interference.

Applications


- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Uninterruptible Power Supplies (UPS)
- Power supplies for welding applications.

980909/2

²⁾ A list of corresponding tests is available

Dimensions LV 25-1000 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance ± 0.3 mm

ullet Fastening 4 holes arnothing 4.2 mm

• Connection of primary Faston 6.3 x 0.8 mm

• Connection of secondary Faston 6.3 x 0.8 mm

Remarks

- \mathbf{I}_{S} is positive when \mathbf{V}_{P} is applied on terminal +HT.
- The primary circuit of the transducer must be linked to the connections where the voltage has to be measured.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.