
SpaceWire CODEC with RMAP
GRSPW / GRSPW-FT

CompanionCore Data Sheet

GAISLER
Features

• Full implementation of SpaceWire standard
ECSS-E-ST-50-12C

• Protocol ID extension ECSS-E-ST-50-11C
• RMAP protocol ECSS-E-ST-50-11C
• AMBA AHB back-end with DMA
• Descriptor-based autonomous multi-packet

transfer
• SEU protection and fault-tolerance
• Low area and high transfer frequency
• 100 Mbit/s data transfer on Actel RTAX
• Support for Fusion, IGLOO, RT-ProASIC3/E,

Axcelerator and RTAX-S Product Families
Copyright Aeroflex Gaisler AB

Transmitter

Receiver

D

S

S

D

RxClock
Recovery

TxClk

RxClock

N-Ch
FIFO

LinkInterface
FSM

Tx clock domain

Rx clock domain

Send
FSM

RMA
Receiv

RMAP
Transmitt
Description

The GRSPW core implements a SpaceWire
Codec with RMAP support and AMBATM host
interface. The core implements the SpaceWire
standard with the protocol identification
extension and RMAP protocol draft. Receive and
transmit data is autonomously transferred
between the SpaceWire Codec and the AMBA
AHB bus using DMA transfers.

Through the use of receive and transmit
descriptors, multiple SpaceWire packets can be
received and transmitted without processor
involvement. The GRSPW control registers are
accessed through an APB interface.
AHB Master
Interface

Transmitter
FIFO

ar

AHB clock domain

Data
Parallelization

Receiver
AHB FIFO

Transmitter
DMA Engine

Registers
APB

Interface

Receiver
DMA Engine

P
er

er
Applications

The fault tolerant design of the SpaceWire core in
combination with the radiation tolerant Actel
FPGA gives total immunity to radiation effects
and makes it well suited for space applications.
December 2008, Version 1.0.2

2 GRSPW / GRSPW-FT

GAISLER
1 Introduction

1.1 Overview

The GRSPW core implements a SpaceWire Codec with RMAP support and AMBA host interface.
The core implements the ECSS SpaceWire standard with the protocol identification extension and
Remote Memory Access Protocol (RMAP).
Receive and transmit data is autonomously transferred between the SpaceWire Codec and the AMBA
AHB bus using DMA transfers. Through the use of receive and transmit descriptors, multiple
SpaceWire packets can be received and transmitted without CPU involvement. The GRSPW control
registers are accessed through an APB interface.

1.2 Example application

The GRSPW core has been designed to fit into an architecture from which a large variety of applica-
tions can be derived. The architecture is centered around the AMBA Advanced High-speed Bus
(AHB), to which the GRSPW core and other high-bandwidth units are connected. Low-bandwidth
units connected to the AMBA Advanced Peripheral Bus (APB) which is accessed through an AHB to
APB bridge. The architecture is shown in figure 2.

Figure 1. GRSPW block diagram

AMBA AHB

GRSPW

SpaceWire

APB slave

AHB masterSpaceWire signals

AMBA APB

RMAP Ctrl
Codec

Registers

Figure 2. Architectural block diagram of a typical system using the SpaceWire codec

LEON3FT
32-bit SPARC
Integer Unit

I-cache

Debug
Support

UnitD-cache

CAN
2.0

Controller

Memory
Controller
with EDAC

SDRAM
Controller
with EDAC

SpaceWire
Codec

Interface

Mil-Std-1553
BC/RT/MT
Interface

2 x UART

16 x GPIO

Mil-Std-1553
RT

Interface

32-bit AMBA AHB

Timers

Interrupt

AHB / APB

UART
Debug
Link

JTAG
Debug
Link

On-Chip
Memory

with EDAC

FPU

PROM/SRAM SDRAM LVDS I/F

32 32

CAN-2.0 Dual-1553 Dual-1553

AHB
CTRL
Copyright Aeroflex Gaisler AB December 2008, Version 1.0.2

3 GRSPW / GRSPW-FT

GAISLER
1.3 Signal overview

The GRSPW signals are shown in figure 3. Note that the AMBA AHB and APB signals are imple-
mented VHDL records and are not shown in detail.

1.4 Implementation characteristics

The GRSPW is inherently portable and can be implemented on most FPGA and ASIC technologies.
Table 1 shows the approximate cell count and frequency for four different GRSPW configurations on
Actel RTAX.

The GRSPW core is available in VHDL source code or as a pre-synthesized netlist. It can be delivered
for stand-alone operation or with a wrapper for GRLIB AMBA plug&play interface.

Table 1. Implementation characteristics (Cells (comb. / seq.) / RAM blocks / AHB MHz / SPW MHz)

Core configuration RTAX2000S-1 ASIC

GRSPW 3,100 (2,100 / 1,000) / 3 / 40 / 100 10,000 gates

GRSPW + RMAP 4,700 (3,450 / 1,250) / 4 / 40 / 100 15,000 gates

GRSPW-FT 3,100 (2,100 / 1,000) / 5 / 40 / 100 11,000 gates

GRSPW-FT + RMAP 4,800 (3,550 / 1,250) / 6 / 40 / 100 16,000 gates

Figure 3. Signal overview

clk

rst

txclk

swni.d

swni.s

swni.tickin

swni.clkdiv10

swno.d

swno.s

swno.tickout

SpaceWire Link

Clock & Reset

swni.timerrstval

swni.dcrstval

swni.rmapen

ahbmoahbmi

apboapbi
AMBA

Configuration
Copyright Aeroflex Gaisler AB December 2008, Version 1.0.2

4 GRSPW / GRSPW-FT

GAISLER
2 GRSPW - SpaceWire codec with AHB host Interface and RMAP target

2.1 Overview

The SpaceWire core provides an interface between the AHB bus and a SpaceWire network. It imple-
ments the SpaceWire standard (ECSS-E-ST-50-12A) with the protocol identification extension
(ECSS-E-ST-50-11C).The optional Remote Memory Access Protocol (RMAP) target implements the
ECSS standard (ECSS-E-ST-50-11C).
The core is configured through a set of registers accessed through an APB interface. Data is trans-
ferred through DMA channels using an AHB master interface.
Currently, there is one DMA channel but the core can easily be extended to use separate DMA chan-
nels for specific protocols. The core can also be configured to have either one or two ports.
There can be up to four clock domains: one for the AHB interface (system clock), one for the trans-
mitter and one or two for the receiver depending on the number of configured ports. The receiver
clock can be twice as fast and the transmitter clock four times as fast as the system clock whose fre-
quency should be at least 10 MHz.
The core only supports byte addressed 32-bit big-endian host systems.

2.2 Operation

2.2.1 Overview

The main sub-blocks of the core are the link-interface, the RMAP target and the AMBA interface. A
block diagram of the internal structure can be found in figure 4.
The link interface consists of the receiver, transmitter and the link interface FSM. They handle com-
munication on the SpaceWire network. The AMBA interface consists of the DMA engines, the AHB
master interface and the APB interface. The link interface provides FIFO interfaces to the DMA
engines. These FIFOs are used to transfer N-Chars between the AMBA and SpaceWire domains dur-
ing reception and transmission.

Figure 4. Block diagram

TRANSMITTER

RXCLK

TXCLK

RXCLK

TRANSMITTER
FSM

LINKINTERFACE

SEND

RMAP

D(1:0)

S(1:0)

FSM

RECOVERY

RECEIVER0

RXCLK
RECOVERY

RXCLK

FSM

TRANSMITTER
DMA ENGINE

RECEIVER
DMA ENGINE

TRANSMITTER

RMAP
RECEIVER

N-CHAR
FIFO

RECEIVER
AHB FIFO

RECEIVER DATA
PARALLELIZATION

AHB
MASTER INTERFACE

REGISTERS
APB

INTERFACE

D0

S0

S1
RECEIVER1

D1
Copyright Aeroflex Gaisler AB December 2008, Version 1.0.2

5 GRSPW / GRSPW-FT

GAISLER
The RMAP target is an optional part of the core which can be enabled with a VHDL generic. The
RMAP target handles incoming packets which are determined to be RMAP commands instead of the
receiver DMA engine. The RMAP command is decoded and if it is valid, the operation is performed
on the AHB bus. If a reply was requested it is automatically transmitted back to the source by the
RMAP transmitter.
The core is controlled by writing to a set of user registers through the APB interface and three signals:
tick-in, rmapen and clkdiv10. The controlled parts are clock-generation, DMA engines, RMAP target
and the link interface.
The link interface, DMA engines, RMAP target and AMBA interface are described in section 2.3, 2.4,
2.6 and 2.7 respectively.

2.2.2 Protocol support

The core only accepts packets with a destination address corresponding to the one set in the node
address register. Packets with address mismatch will be silently discarded (except in promiscuous
mode which is covered in section 2.4.10). The node address register is initialized to the default
address 254 during reset. It can then be changed to some other value by writing to the register.
The core also requires that the byte following the destination address is a protocol identifier as speci-
fied in part 2 of the SpaceWire standard. It is used to determine to which DMA-channel a packet is
destined. Currently only one channel is available to which all packets (except RMAP commands) are
stored but the core is prepared to be easily expandable with more DMA channels. Figure 5 shows the
packet type expected by the core.
RMAP (Protocol ID = 0x01) commands are handled separately from other packets if the hardware
RMAP target is enabled. When enabled, all RMAP commands are processed, executed and replied in
hardware. All RMAP replies received are still stored to the DMA channel. If the RMAP target is dis-
abled, all packets are stored to the DMA channel. More information on the RMAP protocol support is
found in section 2.6.
All packets arriving with the extended protocol ID (0x00) are stored to the DMA channel. This means
that the hardware RMAP target will not work if the incoming RMAP packets use the extended proto-
col ID. Note also that packets with the reserved extended protocol identifier (ID = 0x000000) are not
ignored by the core. It is up to the client receiving the packets to ignore them.
When transmitting packets, the address and protocol-ID fields must be included in the buffers from
where data is fetched. They are not automatically added by the core.
Figure 5 shows a packet with a normal protocol identifier. The core also allows reception and trans-
mission with extended protocol identifiers but without support for RMAP CRC calculations and the
RMAP target.

2.3 Link interface

The link interface handles the communication on the SpaceWire network and consists of a transmitter,
receiver, a FSM and FIFO interfaces. An overview of the architecture is found in figure 4.

Figure 5. The SpaceWire packet with protocol ID that is expected by the GRSPW.

Addr ProtID Dn-2..D3D2D1D0 Dn-1 EOP
Copyright Aeroflex Gaisler AB December 2008, Version 1.0.2

6 GRSPW / GRSPW-FT

GAISLER
2.3.1 Link interface FSM

The FSM controls the link interface (a more detailed description is found in the SpaceWire standard).
The low-level protocol handling (the signal and character level of the SpaceWire standard) is handled
by the transmitter and receiver while the FSM in the host domain handles the exchange level.
The link interface FSM is controlled through the control register. The link can be disabled through the
link disable bit, which depending on the current state, either prevents the link interface from reaching
the started state or forces it to the error-reset state. When the link is not disabled, the link interface
FSM is allowed to enter the started state when either the link start bit is set or when a NULL character
has been received and the autostart bit is set.
The current state of the link interface determines which type of characters are allowed to be transmit-
ted which together with the requests made from the host interfaces determine what character will be
sent.
Time-codes are sent when the FSM is in the run-state and a request is made through the time-interface
(described in section 2.3.5).
When the link interface is in the connecting- or run-state it is allowed to send FCTs. FCTs are sent
automatically by the link interface when possible. This is done based on the maximum value of 56 for
the outstanding credit counter and the currently free space in the receiver N-Char FIFO. FCTs are sent
as long as the outstanding counter is less than or equal to 48 and there are at least 8 more empty FIFO
entries than the counter value.
N-Chars are sent in the run-state when they are available from the transmitter FIFO and there are
credits available. NULLs are sent when no other character transmission is requested or the FSM is in
a state where no other transmissions are allowed.
The credit counter (incoming credits) is automatically increased when FCTs are received and
decreased when N-Chars are transmitted. Received N-Chars are stored to the receiver N-Char FIFO
for further handling by the DMA interface. Received Time-codes are handled by the time-interface.

2.3.2 Transmitter

The state of the FSM, credit counters, requests from the time-interface and requests from the DMA-
interface are used to decide the next character to be transmitted. The type of character and the charac-
ter itself (for N-Chars and Time-codes) to be transmitted are presented to the low-level transmitter
which is located in a separate clock-domain.
This is done because one usually wants to run the SpaceWire link on a different frequency than the
host system clock. The core has a separate clock input which is used to generate the transmitter clock.
More information on transmitter clock generation is found in section 2.8.1. Since the transmitter often
runs on high frequency clocks (> 100 MHz) as much logic as possible has been placed in the system
clock domain to minimize power consumption and timing issues.
The transmitter logic in the host clock domain decides what character to send next and sets the proper
control signal and presents any needed character to the low-level transmitter as shown in figure 6. The
transmitter sends the requested characters and generates parity and control bits as needed. If no
requests are made from the host domain, NULLs are sent as long as the transmitter is enabled. Most of
Copyright Aeroflex Gaisler AB December 2008, Version 1.0.2

7 GRSPW / GRSPW-FT

GAISLER
the signal and character levels of the SpaceWire standard is handled in the transmitter. External LVDS
drivers are needed for the data and strobe signals.

A transmission FSM reads N-Chars for transmission from the transmitter FIFO. It is given packet
lengths from the DMA interface and appends EOPs/EEPs and RMAP CRC values if requested. When
it is finished with a packet the DMA interface is notified and a new packet length value is given.

2.3.3 Receiver

The receiver detects connections from other nodes and receives characters as a bit stream on the data
and strobe signals. It is also located in a separate clock domain which runs on a clock generated from
the received data and strobe signals. More information on the clock-generation can be found in sec-
tion 2.8.1.
The receiver is activated as soon as the link interface leaves the error reset state. Then after a NULL is
received it can start receiving any characters. It detects parity, escape and credit errors which causes
the link interface to enter the error reset state. Disconnections are handled in the link interface part in
the system clock domain because no receiver clock is available when disconnected.
Received Characters are flagged to the host domain and the data is presented in parallel form. The
interface to the host domain is shown in figure 7. L-Chars are the handled automatically by the host
domain link interface part while all N-Chars are stored in the receiver FIFO for further handling. If
two or more consecutive EOPs/EEPs are received all but the first are discarded.
There are no signals going directly from the transmitter clock domain to the receiver clock domain
and vice versa. All the synchronization is done to the system clock.

Transmitter Clock Domain Host Clock Domain

Transmitter

D

S

Send Time-code
Send FCT
Send NChar
Time-code[7:0]
NChar[8:0]

Figure 6. Schematic of the link interface transmitter.

Receiver Clock Domain Host Clock Domain

Receiver

D

S

Got Time-code
Got FCT

Got NChar
Time-code[7:0]
NChar[7:0]

Figure 7. Schematic of the link interface receiver.

Got EEP
Got EOP
Copyright Aeroflex Gaisler AB December 2008, Version 1.0.2

8 GRSPW / GRSPW-FT

GAISLER
2.3.4 Dual port support

The core can be configured to include an additional SpaceWire port. With dual ports the transmitter
drives an additional pair of data/strobe output signals and one extra receiver is added to handle a sec-
ond pair of data/strobe input signals.
One of the ports is set as active (how the active port is selected is explained below) and the transmitter
drives the data/strobe signals of the active port with the actual output values as explained in section
2.3.2. The inactive port is driven with zero on both data and strobe.
Both receivers will always be active but only the active port’s interface signals (see figure 7) will be
propagated to the link interface FSM. Each time the active port is changed, the link will be reset so
that the new link is started in a controlled manner.
When the noportforce register is zero the portsel register bit selects the active link and when set to one
it is determined by the current link activity. In the latter mode the port is changed when no activity is
seen on the currently active link while there is activity on the deselected receive port. Activity is
defined as a detected null. This definition is selected so that glitches (e.g. port unconnected) do not
cause unwanted port switches.

2.3.5 Time interface

The time interface is used for sending Time-codes over the SpaceWire network and consists of a time-
counter register, time-ctrl register, tick-in signal, tick-out signal, tick-in register field and a tick-out
register field. There are also two control register bits which enable the time receiver and transmitter
respectively.

Each Time-code sent from the core is a concatenation of the time-ctrl and the time-counter register.
There is a timetxen bit which is used to enable Time-code transmissions. It is not possible to send
time-codes if this bit is zero.
Received Time-codes are stored to the same time-ctrl and time-counter registers which are used for
transmission. The timerxen bit in the control register is used for enabling time-code reception. No
time-codes will be received if this bit is zero.
The two enable bits are used for ensuring that a node will not (accidentally) both transmit and receive
time-codes which violates the SpaceWire standard. It also ensures that a the master sending time-
codes on a network will not have its time-counter overwritten if another (faulty) node starts sending
time-codes.
The time-counter register is set to 0 after reset and is incremented each time the tick-in signal is
asserted for one clock-period and the timetxen bit is set. This also causes the link interface to send the
new value on the network. Tick-in can be generated either by writing a one to the register field or by
asserting the tick-in signal. A Tick-in should not be generated too often since if the time-code after the
previous Tick-in has not been sent the register will not be incremented and no new value will be sent.
The tick-in field is automatically cleared when the value has been sent and thus no new ticks should
be generated until this field is zero. If the tick-in signal is used there should be at least 4 system-clock
and 25 transmit-clock cycles between each assertion.
A tick-out is generated each time a valid time-code is received and the timerxen bit is set. When the
tick-out is generated the tick-out signal will be asserted one clock-cycle and the tick-out register field
is asserted until it is cleared by writing a one to it.
The current time counter value can be read from the time register. It is updated each time a Time-code
is received and the timerxen bit is set. The same register is used for transmissions and can also be
written directly from the APB interface.
Copyright Aeroflex Gaisler AB December 2008, Version 1.0.2

9 GRSPW / GRSPW-FT

GAISLER
The control bits of the Time-code are always stored to the time-ctrl register when a Time-code is
received whose time-count is one more than the nodes current time-counter register. The time-ctrl reg-
ister can be read through the APB interface. The same register is used during time-code transmissions.
It is possible to have both the time-transmission and reception functions enabled at the same time.

2.4 Receiver DMA engine

The receiver DMA engine handles reception of data from the SpaceWire network to different DMA
channels. Currently there is only one receive DMA channel available but the core has been written so
that additional channels can be easily added if needed.

2.4.1 Basic functionality

The receiver DMA engine reads N-Chars from the N-Char FIFO and stores them to a DMA channel.
Reception is based on descriptors located in a consecutive area in memory that hold pointers to buff-
ers where packets should be stored. When a packet arrives at the core it reads a descriptor from mem-
ory and stores the packet to the memory area pointed to by the descriptor. Then it stores status to the
same descriptor and increments the descriptor pointer to the next one.

2.4.2 Setting up the core for reception

A few registers need to be initialized before reception can take place. First the link interface need to
be put in the run state before any data can be sent. The DMA channel has a maximum length register
which sets the maximum size of packet that can be received to this channel. Larger packets are trun-
cated and the excessive part is spilled. If this happens an indication will be given in the status field of
the descriptor. The minimum value for the receiver maximum length field is 4 and the value can only
be incremented in steps of four bytes. If the maximum length is set to zero the receiver will not func-
tion correctly.
The node address register needs to be set to hold the address of this SpaceWire node. Packets received
with the incorrect address are discarded. Finally, the descriptor table and control register must be ini-
tialized. This will be described in the two following sections.

2.4.3 Setting up the descriptor table address

The core reads descriptors from an area in memory pointed to by the receiver descriptor table address
register. The register consists of a base address and a descriptor selector. The base address points to
the beginning of the area and must start on a 1 kbytes aligned address. It is also limited to be 1 kbytes
in size which means the maximum number of descriptors is 128.
The descriptor selector points to individual descriptors and is increased by 1 when a descriptor has
been used. When the selector reaches the upper limit of the area it wraps to the beginning automati-
cally. It can also be set to wrap automatically by setting a bit in the descriptors. The idea is that the
selector should be initialized to 0 (start of the descriptor area) but it can also be written with another 8
bytes aligned value to start somewhere in the middle of the area. It will still wrap to the beginning of
the area.
If one wants to use a new descriptor table the receiver enable bit has to be cleared first. When the
rxactive bit for the channel is cleared it is safe to update the descriptor table register. When this is fin-
ished and descriptors are enabled the receiver enable bit can be set again.
Copyright Aeroflex Gaisler AB December 2008, Version 1.0.2

10 GRSPW / GRSPW-FT

GAISLER
2.4.4 Enabling descriptors

As mentioned earlier one or more descriptors must be enabled before reception can take place. Each
descriptor is 8 byte in size and the layout can be found in the tables below. The descriptors should be
written to the memory area pointed to by the receiver descriptor table address register. When new
descriptors are added they must always be placed after the previous one written to the area. Otherwise
they will not be noticed.
A descriptor is enabled by setting the address pointer to point at a location where data can be stored
and then setting the enable bit. The WR bit can be set to cause the selector to be set to zero when
reception has finished to this descriptor. IE should be set if an interrupt is wanted when the reception
has finished. The DMA control register interrupt enable bit must also be set for this to happen.
The descriptor packet address should be word aligned. All accesses on the bus are word accesses so
complete words will always be overwritten regardless of whether all 32-bit contain received data.
Also if the packet does not end on a word boundary the complete word containing the last data byte
will be overwritten. If the rxunaligned or rmap VHDL generic is set to 1 this restriction is removed
and any number of bytes can be received to any packet address without excessive bytes being over-
written.

2.4.5 Setting up the DMA control register

The final step to receive packets is to set the control register in the following steps: The receiver must
be enabled by setting the rxen bit in the DMA control register (see section 2.9). This can be done any-
time and before this bit is set nothing will happen. The rxdescav bit in the DMA control register is

Table 2. GRSPW receive descriptor word 0 (address offset 0x0)
31 30 29 28 27 26 25 24 0

TR DC HC EP IE WR EN PACKETLENGTH

31 Truncated (TR) - Packet was truncated due to maximum length violation.
30 Data CRC (DC) - 1 if a CRC error was detected for the data and 0 otherwise.
29 Header CRC (HC) - 1 if a CRC error was detected for the header and 0 otherwise.
28 EEP termination (EP) - This packet ended with an Error End of Packet character.
27 Interrupt enable (IE) - If set, an interrupt will be generated when a packet has been received if the

receive interrupt enable bit in the DMA channel control register is set.
26 Wrap (WR) - If set, the next descriptor used by the GRSPW will be the first one in the descriptor

table (at the base address). Otherwise the descriptor pointer will be increased with 0x8 to use the
descriptor at the next higher memory location. The descriptor table is limited to 1 kbytes in size and
the pointer will be automatically wrap back to the base address when it reaches the 1 kbytes bound-
ary.

25 Enable (EN) - Set to one to activate this descriptor. This means that the descriptor contains valid con-
trol values and the memory area pointed to by the packet address field can be used to store a packet.

24: 0 Packet length (PACKETLENGTH) - The number of bytes received to this buffer. Only valid after
EN has been set to 0 by the GRSPW.

Table 3. GRSPW receive descriptor word 1 (address offset 0x4)
31 0

PACKETADDRESS

31: 0 Packet address (PACKETADDRESS) - The address pointing at the buffer which will be used to store
the received packet. If the rxunaligned and rmap VHDL generics are both set to zero only bit 31 to 2
are used.
Copyright Aeroflex Gaisler AB December 2008, Version 1.0.2

11 GRSPW / GRSPW-FT

GAISLER
then set to indicate that there are new active descriptors. This must always be done after the descrip-
tors have been enabled or the core might not notice the new descriptors. More descriptors can be acti-
vated when reception has already started by enabling the descriptors and writing the rxdescav bit.
When these bits are set reception will start immediately when data is arriving.

2.4.6 The effect to the control bits during reception

When the receiver is disabled all packets going to the DMA-channel are discarded. If the receiver is
enabled the next state is entered where the rxdescav bit is checked. This bit indicates whether there are
active descriptors or not and should be set by the external application using the DMA channel each
time descriptors are enabled as mentioned above. If the rxdescav bit is ‘0’ and the nospill bit is ‘0’ the
packets will be discarded. If nospill is one the core waits until rxdescav is set.
When rxdescav is set the next descriptor is read and if enabled the packet is received to the buffer. If
the read descriptor is not enabled, rxdescav is set to ‘0’ and the packet is spilled depending on the
value of nospill.
The receiver can be disabled at any time and will cause all packets received afterwards to be dis-
carded. If a packet is currently received when the receiver is disabled the reception will still be fin-
ished. The rxdescav bit can also be cleared at any time. It will not affect any ongoing receptions but
no more descriptors will be read until it is set again. Rxdescav is also cleared by the core when it reads
a disabled descriptor.

2.4.7 Address recognition and packet handling

When the receiver N-Char FIFO is not empty, N-Chars are read by the receiver DMA engine. The
first character is interpreted as the logical address which is compared to the node address register. If it
does not match, the complete packet is discarded (up to and including the next EOP/EEP).
If the address matches the next action taken depends on whether RMAP is enabled or not. If RMAP is
disabled all packets are stored to the DMA channel and depending on the conditions mentioned in the
previous section, the packet will be received or not. If the packet is received complete packet includ-
ing address and protocol ID but excluding EOP/EEP is stored to the address indicated in the descrip-
tor, otherwise the complete packet is discarded.
If RMAP is enabled the protocol ID and 3rd byte in the packet is first checked before any decisions
are made. If incoming packet is an RMAP packet (ID = 0x01) and the command type field is 01b the
packet is processed by the RMAP command handler which is described in section 2.6. Otherwise the
packet is processed by the DMA engine as when RMAP is disabled.
At least 2 non EOP/EEP N-Chars need to be received for a packet to be stored to the DMA channel. If
it is an RMAP packet 3 N-Chars are needed since the command byte determines where the packet is
processed. Packets smaller than the minimum size are discarded.

2.4.8 Status bits

When the reception of a packet is finished the enable bit in the current descriptor is set to zero. When
enable is zero, the status bits are also valid and the number of received bytes is indicated in the length
field. The DMA control register contains a status bit which is set each time a packet has been
received. The core can also be made to generate an interrupt for this event as mentioned in section
2.4.4.
RMAP CRC logic is included in the implementation if the rmapcrc or rmap VHDL generic set to 1.
The RMAP CRC calculation is always active for all received packets and all bytes except the EOP/
EEP are included. The packet is always assumed to be a RMAP packet and the length of the header is
Copyright Aeroflex Gaisler AB December 2008, Version 1.0.2

12 GRSPW / GRSPW-FT

GAISLER
determined by checking byte 3 which should be the command field. The calculated CRC value is then
checked when the header has been received (according to the calculated number of bytes) and if it is
non-zero the HC bit is set indicating a header CRC error.
The CRC value is not set to zero after the header has been received, instead the calculation continues
in the same way until the complete packet has been received. Then if the CRC value is non-zero the
DC bit is set indicating a data CRC error. This means that the core can indicate a data CRC error even
if the data field was correct when the header CRC was incorrect. However, the data should not be used
when the header is corrupt and therefore the DC bit is unimportant in this case. When the header is not
corrupted the CRC value will always be zero when the calculation continues with the data field and
the behaviour will be as if the CRC calculation was restarted
If the received packet is not of RMAP type the header CRC error indication bit cannot be used. It is
still possible to use the DC bit if the complete packet is covered by a CRC calculated using the RMAP
CRC definition. This is because the core does not restart the calculation after the header has been
received but instead calculates a complete CRC over the packet. Thus any packet format with one
CRC at the end of the packet calculated according to RMAP standard can be checked using the DC
bit.
If the packet is neither of RMAP type nor of the type above with RMAP CRC at the end, then both the
HC and DC bits should be ignored.

2.4.9 Error handling

If a packet reception needs to be aborted because of congestion on the network, the suggested solution
is to set link disable to ‘1’. Unfortunately, this will also cause the packet currently being transmitted to
be truncated but this is the only safe solution since packet reception is a passive operation depending
on the transmitter at the other end. A channel reset bit could be provided but is not a satisfactory solu-
tion since the untransmitted characters would still be in the transmitter node. The next character
(somewhere in the middle of the packet) would be interpreted as the node address which would prob-
ably cause the packet to be discarded but not with 100% certainty. Usually this action is performed
when a reception has stuck because of the transmitter not providing more data. The channel reset
would not resolve this congestion.
If an AHB error occurs during reception the current packet is spilled up to and including the next
EEP/EOP and then the currently active channel is disabled and the receiver enters the idle state. A bit
in the channels control/status register is set to indicate this condition.

2.4.10 Promiscuous mode

The core supports a promiscuous mode where all the data received is stored to the DMA channel
regardless of the node address and possible early EOPs/EEPs. This means that all non-eop/eep N-
Chars received will be stored to the DMA channel. The rxmaxlength register is still checked and
packets exceeding this size will be truncated.
RMAP commands will still be handled by the RMAP target when promiscuous mode is enabled if the
rmapen bit is set. If it is cleared, RMAP commands will also be stored to the DMA channel.

2.5 Transmitter DMA engine

The transmitter DMA engine handles transmission of data from the DMA channel to the SpaceWire
network. There is one DMA channel available but the core has been written so that additional DMA
channels can be easily added if needed.
Copyright Aeroflex Gaisler AB December 2008, Version 1.0.2

13 GRSPW / GRSPW-FT

GAISLER
2.5.1 Basic functionality

The transmit DMA engine reads data from the AHB bus and stores them in the transmitter FIFO for
transmission on the SpaceWire network. Transmission is based on the same type of descriptors as for
the receiver and the descriptor table has the same alignment and size restrictions. When there are new
descriptors enabled the core reads them and transfer the amount data indicated.

2.5.2 Setting up the core for transmission

Four steps need to be performed before transmissions can be done with the core. First the link inter-
face must be enabled and started by writing the appropriate value to the ctrl register. Then the address
to the descriptor table needs to be written to the transmitter descriptor table address register and one or
more descriptors must also be enabled in the table. Finally, the txen bit in the DMA control register
should be written with a one which triggers the transmission. These steps will be covered in more
detail in the next sections.

2.5.3 Enabling descriptors

The descriptor table address register works in the same way as the receiver’s corresponding register
which was covered in section 2.4.
To transmit packets one or more descriptors have to be initialized in memory which is done in the fol-
lowing way: The number of bytes to be transmitted and a pointer to the data has to be set. There are
two different length and address fields in the transmit descriptors because there are separate pointers
for header and data. If a length field is zero the corresponding part of a packet is skipped and if both
are zero no packet is sent. The maximum header length is 255 bytes and the maximum data length is
16 Mbyte - 1. When the pointer and length fields have been set the enable bit should be set to enable
the descriptor. This must always be done last. The other control bits must also be set before enabling
the descriptor.
The transmit descriptors are 16 bytes in size so the maximum number in a single table is 64. The dif-
ferent fields of the descriptor together with the memory offsets are shown in the tables below.
The HC bit should be set if RMAP CRC should be calculated and inserted for the header field and
correspondingly the DC bit should be set for the data field. This field is only used by the core when
the CRC logic is available (rmap or rmapcrc VHDL generic set to 1). The header CRC will be calcu-
lated from the data fetched from the header pointer and the data CRC is generated from data fetched
from the data pointer. The CRCs are appended after the corresponding fields. The NON-CRC bytes
field is set to the number of bytes in the beginning of the header field that should not be included in
the CRC calculation. The CRCs are sent even if the corresponding length is zero.
When both header and data length are zero no packet is sent not even an EOP.

2.5.4 Starting transmissions

When the descriptors have been initialized, the transmit enable bit in the DMA control register has to
be set to tell the core to start transmitting. New descriptors can be activated in the table on the fly
(while transmission is active). Each time a set of descriptors is added the transmit enable register bit
should be set. This has to be done because each time the core encounters a disabled descriptor this
register bit is set to 0.

Table 4. GRSPW transmit descriptor word 0 (address offset 0x0)
31 18 17 16 15 14 13 12 11 8 7 0

RESERVED DC HC LE IE WR EN NONCRCLEN HEADERLEN
Copyright Aeroflex Gaisler AB December 2008, Version 1.0.2

14 GRSPW / GRSPW-FT

GAISLER
31: 18 RESERVED
17 Append data CRC (DC) - Append CRC calculated according to the RMAP specification after the

data sent from the data pointer. The CRC covers all the bytes from this pointer. A null CRC will
be sent if the length of the data field is zero.

16 Append header CRC (HC) - Append CRC calculated according to the RMAP specification after the
data sent from the header pointer. The CRC covers all bytes from this pointer except a number of
bytes in the beginning specified by the non-crc bytes field. The CRC will not be sent if the header
length field is zero.

15 Link error (LE) - A Link error occurred during the transmission of this packet.
14 Interrupt enable (IE) - If set, an interrupt will be generated when the packet has been transmitted and

the transmitter interrupt enable bit in the DMA control register is set.
13 Wrap (WR) - If set, the descriptor pointer will wrap and the next descriptor read will be the first one

in the table (at the base address). Otherwise the pointer is increased with 0x10 to use the descriptor at
the next higher memory location.

12 Enable (EN) - Enable transmitter descriptor. When all control fields (address, length, wrap and crc)
are set, this bit should be set. While the bit is set the descriptor should not be touched since this
might corrupt the transmission. The GRSPW clears this bit when the transmission has finished.

11: 8 Non-CRC bytes (NONCRCLEN)- Sets the number of bytes in the beginning of the header which
should not be included in the CRC calculation. This is necessary when using path addressing since
one or more bytes in the beginning of the packet might be discarded before the packet reaches its
destination.

7: 0 Header length (HEADERLEN) - Header Length in bytes. If set to zero, the header is skipped.

Table 5. GRSPW transmit descriptor word 1 (address offset 0x4)
31 0

HEADERADDRESS

31: 0 Header address (HEADERADDRESS) - Address from where the packet header is fetched. Does not
need to be word aligned.

Table 6. GRSPW transmit descriptor word 2 (address offset 0x8)
31 24 23 0

RESERVED DATALEN

31: 24 RESERVED
23: 0 Data length (DATALEN) - Length of data part of packet. If set to zero, no data will be sent. If both

data- and header-lengths are set to zero no packet will be sent.

Table 7. GRSPW transmit descriptor word 3(address offset 0xC)
31 0

DATAADDRESS

31: 0 Data address (DATAADDRESS) - Address from where data is read. Does not need to be word
aligned.

Table 4. GRSPW transmit descriptor word 0 (address offset 0x0)
Copyright Aeroflex Gaisler AB December 2008, Version 1.0.2

15 GRSPW / GRSPW-FT

GAISLER
2.5.5 The transmission process

When the txen bit is set the core starts reading descriptors immediately. The number of bytes indicated
are read and transmitted. When a transmission has finished, status will be written to the first field of
the descriptor and a packet sent bit is set in the DMA control register. If an interrupt was requested it
will also be generated. Then a new descriptor is read and if enabled a new transmission starts, other-
wise the transmit enable bit is cleared and nothing will happen until it is enabled again.

2.5.6 The descriptor table address register

The internal pointer which is used to keep the current position in the descriptor table can be read and
written through the APB interface. This pointer is set to zero during reset and is incremented each
time a descriptor is used. It wraps automatically when the 1 kbytes limit for the descriptor table is
reached or it can be set to wrap earlier by setting a bit in the current descriptor.
The descriptor table register can be updated with a new table anytime when no transmission is active.
No transmission is active if the transmit enable bit is zero and the complete table has been sent or if
the table is aborted (explained below). If the table is aborted one has to wait until the transmit enable
bit is zero before updating the table pointer.

2.5.7 Error handling

Abort Tx
The DMA control register contains a bit called Abort TX which if set causes the current transmission
to be aborted, the packet is truncated and an EEP is inserted. This is only useful if the packet needs to
be aborted because of congestion on the SpaceWire network. If the congestion is on the AHB bus this
will not help (This should not be a problem since AHB slaves should have a maximum of 16 wait-
states). The aborted packet will have its LE bit set in the descriptor. The transmit enable register bit is
also cleared and no new transmissions will be done until the transmitter is enabled again.
AHB error
When an AHB error is encountered during transmission the currently active DMA channel is disabled
and the transmitter goes to the idle mode. A bit in the DMA channel’s control/status register is set to
indicate this error condition and, if enabled, an interrupt will also be generated. Further error handling
depends on what state the transmitter DMA engine was in when the AHB error occurred. If the
descriptor was being read the packet transmission had not been started yet and no more actions need
to be taken.
If the AHB error occurs during packet transmission the packet is truncated and an EEP is inserted.
Lastly, if it occurs when status is written to the descriptor the packet has been successfully transmitted
but the descriptor is not written and will continue to be enabled (this also means that no error bits are
set in the descriptor for AHB errors).
The client using the channel has to correct the AHB error condition and enable the channel again. No
more AHB transfers are done again from the same unit (receiver or transmitter) which was active dur-
ing the AHB error until the error state is cleared and the unit is enabled again.
Link error
When a link error occurs during the transmission the remaining part of the packet is discarded up to
and including the next EOP/EEP. When this is done status is immediately written (with the LE bit set)
and the descriptor pointer is incremented. The link will be disconnected when the link error occurs but
the core will automatically try to connect again provided that the link-start bit is asserted and the link-
disabled bit is deasserted. If the LE bit in the DMA channel’s control register is not set the transmitter
Copyright Aeroflex Gaisler AB December 2008, Version 1.0.2

16 GRSPW / GRSPW-FT

GAISLER
DMA engine will wait for the link to enter run-state and start a new transmission immediately when
possible if packets are pending. Otherwise the transmitter will be disabled when a link error occurs
during the transmission of the current packet and no more packets will be transmitted until it is
enabled again.

2.6 RMAP

The Remote Memory Access Protocol (RMAP) is used to implement access to resources in the node
via the SpaceWire Link. Some common operations are reading and writing to memory, registers and
FIFOs. The core has an optional hardware RMAP target which is enabled with a VHDL generic. This
section describes the basics of the RMAP protocol and the target implementation.

2.6.1 Fundamentals of the protocol

RMAP is a protocol which is designed to provide remote access via a SpaceWire network to memory
mapped resources on a SpaceWire node. It has been assigned protocol ID 0x01. It provides three oper-
ations write, read and read-modify-write. These operations are posted operations which means that a
source does not wait for an acknowledge or reply. It also implies that any number of operations can be
outstanding at any time and that no timeout mechanism is implemented in the protocol. Time-outs
must be implemented in the user application which sends the commands. Data payloads of up to 16
Mb - 1 is supported in the protocol. A destination can be requested to send replies and to verify data
before executing an operation. A complete description of the protocol is found in the RMAP standard.

2.6.2 Implementation

The core includes a taget for RMAP commands which processes all incoming packets with protocol
ID = 0x01 and type field (bit 7 and 6 of the 3rd byte in the packet) equal to 01b. When such a packet
is detected it is not stored to the DMA channel, instead it is passed to the RMAP receiver.
The core implements all three commands defined in the standard with some restrictions. The imple-
mentation is based on draft F of the RMAP standard (the only exception being that error code 12 is
not implemented). Support is only provided for 32-bit big-endian systems. This means that the first
byte received is the msb in a word. The command handler will not receive RMAP packets using the
extended protocol ID which are always dumped to the DMA channel.
The RMAP receiver processes commands. If they are correct and accepted the operation is performed
on the AHB bus and a reply is formatted. If an acknowledge is requested the RMAP transmitter auto-
matically send the reply. RMAP transmissions have priority over DMA channel transmissions.
Packets with a mismatching destination logical address are never passed to the RMAP target. There is
a user accessible destination key register which is compared to destination key field in incoming
packets. If there is a mismatch and a reply has been requested the error code in the reply is set to 3.
Replies are sent if and only if the ack field is set to ‘1’.
Copyright Aeroflex Gaisler AB December 2008, Version 1.0.2

17 GRSPW / GRSPW-FT

GAISLER
Detection of all error codes except code 12 is supported. When a failure occurs during a bus access the
error code is set to 1 (General Error). There is predetermined order in which error-codes are set in the
case of multiple errors in the core. It is shown in table 8.

Read accesses are performed on the fly, that is they are not stored in a temporary buffer before trans-
mission. This means that the error code 1 will never be seen in a read reply since the header has
already been sent when the data is read. If the AHB error occurs the packet will be truncated and
ended with an EEP.
Errors up to and including Invalid Data CRC (number 8) are checked before verified commands. The
other errors do not prevent verified operations from being performed.
The details of the support for the different commands are now presented. All defined commands
which are received but have an option set which is not supported in this specific implementation will
not be executed and a possible reply is sent with error code 10.

2.6.3 Write commands

The write commands are divided into two subcategories when examining their capabilities: verified
writes and non-verified writes. Verified writes have a length restriction of 4 B and the address must be
aligned to the size. That is 1 B writes can be done to any address, 2 B must be halfword aligned, 3 B
are not allowed and 4 B writes must be word aligned. Since there will always be only one AHB oper-
ation performed for each RMAP verified write command the incrementing address bit can be set to
any value.
Non-verified writes have no restrictions when the incrementing bit is set to 1. If it is set to 0 the num-
ber of bytes must be a multiple of 4 and the address word aligned. There is no guarantee how many
words will be written when early EOP/EEP is detected for non-verified writes.

2.6.4 Read commands

Read commands are performed on the fly when the reply is sent. Thus if an AHB error occurs the
packet will be truncated and ended with an EEP. There are no restrictions for incrementing reads but
non-incrementing reads have the same alignment restrictions as non-verified writes. Note that the
“Authorization failure” error code will be sent in the reply if a violation was detected even if the

Table 8. The order of error detection in case of multiple errors in the GRSPW. The error detected first has number 1.

Detection Order Error Code Error

1 2 Unused RMAP packet type or command code

2 3 Invalid destination key

3 9 Verify buffer overrun

4 11 RMW data length error

5 10 Authorization failure

6* 1 General Error (AHB errors during non-verified writes)

7 5/7 Early EOP / EEP (if early)

8 4 Invalid Data CRC

9 1 General Error (AHB errors during verified writes or RMW)

10 7 EEP

11 6 Cargo Too Large

*The AHB error is not guaranteed to be detected before Early EOP/EEP or Invalid Data CRC. For very long accesses
the AHB error detection might be delayed causing the other two errors to appear first.
Copyright Aeroflex Gaisler AB December 2008, Version 1.0.2

18 GRSPW / GRSPW-FT

GAISLER
length field was zero. Also note that no data is sent in the reply if an error was detected i.e. if the status
field is non-zero.

2.6.5 RMW commands

All read-modify-write sizes are supported except 6 which would have caused 3 B being read and writ-
ten on the bus. The RMW bus accesses have the same restrictions as the verified writes. As in the ver-
ified write case, the incrementing bit can be set to any value since only one AHB bus operation will be
performed for each RMW command. Cargo too large is detected after the bus accesses so this error
will not prevent the operation from being performed. No data is sent in a reply if an error is detected
i.e. the status field is non-zero.

2.6.6 Control

The RMAP command handler mostly runs in the background without any external intervention, but
there are a few control possibilities.
There is an enable bit in the control register of the core which can be used to completely disable the
RMAP command handler. When it is set to ‘0’ no RMAP packets will be handled in hardware, instead
they are all stored to the DMA channel.
There is a possibility that RMAP commands will not be performed in the order they arrive. This can
happen if a read arrives before one or more writes. Since the command handler stores replies in a
buffer with more than one entry several commands can be processed even if no replies are sent. Data
for read replies is read when the reply is sent and thus writes coming after the read might have been
performed already if there was congestion in the transmitter. To avoid this the RMAP buffer disable
bit can be set to force the command handler to only use one buffer which prevents this situation.
The last control option for the command handler is the possibility to set the destination key which is
found in a separate register.
Copyright Aeroflex Gaisler AB December 2008, Version 1.0.2

19 GRSPW / GRSPW-FT

GAISLER
Table 9. GRSPW hardware RMAP handling of different packet type and command fields.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Command Action

Reserved
Command
/ Response

Write /
Read

Verify
data
before
write

Acknow-
ledge

Increment
Address

0 0 - - - - Response Stored to DMA-channel.

0 1 0 0 0 0 Not used Does nothing. No reply is sent.

0 1 0 0 0 1 Not used Does nothing. No reply is sent.

0 1 0 0 1 0 Read single
address

Executed normally. Address has
to be word aligned and data size
a multiple of four. Reply is sent.
If alignment restrictions are vio-
lated error code is set to 10.

0 1 0 0 1 1 Read incre-
menting
address.

Executed normally. No restric-
tions. Reply is sent.

0 1 0 1 0 0 Not used Does nothing. No reply is sent.

0 1 0 1 0 1 Not used Does nothing. No reply is sent.

0 1 0 1 1 0 Not used Does nothing. Reply is sent with
error code 2.

0 1 0 1 1 1 Read-Mod-
ify-Write
increment-
ing address

Executed normally. If length is
not one of the allowed rmw val-
ues nothing is done and error
code is set to 11. If the length
was correct, alignment restric-
tions are checked next. 1 byte
can be rmw to any address. 2
bytes must be halfword aligned.
3 bytes are not allowed. 4 bytes
must be word aligned. If these
restrictions are violated nothing
is done and error code is set to
10. If an AHB error occurs error
code is set to 1. Reply is sent.

0 1 1 0 0 0 Write, sin-
gle-address,
do not verify
before writ-
ing, no
acknowledge

Executed normally. Address has
to be word aligned and data size
a multiple of four. If alignment is
violated nothing is done. No
reply is sent.

0 1 1 0 0 1 Write, incre-
menting
address, do
not verify
before writ-
ing, no
acknowledge

Executed normally. No restric-
tions. No reply is sent.
Copyright Aeroflex Gaisler AB December 2008, Version 1.0.2

20 GRSPW / GRSPW-FT

GAISLER
0 1 1 0 1 0 Write, sin-
gle-address,
do not verify
before writ-
ing, send
acknowledge

Executed normally. Address has
to be word aligned and data size
a multiple of four. If alignment is
violated nothing is done and
error code is set to 10. If an AHB
error occurs error code is set to 1.
Reply is sent.

0 1 1 0 1 1 Write, incre-
menting
address, do
not verify
before writ-
ing, send
acknowledge

Executed normally. No restric-
tions. If AHB error occurs error
code is set to 1. Reply is sent.

0 1 1 1 0 0 Write, single
address, ver-
ify before
writing, no
acknowledge

Executed normally. Length must
be 4 or less. Otherwise nothing is
done. Same alignment restric-
tions apply as for rmw. No reply
is sent.

0 1 1 1 0 1 Write, incre-
menting
address, ver-
ify before
writing, no
acknowledge

Executed normally. Length must
be 4 or less. Otherwise nothing is
done. Same alignment restric-
tions apply as for rmw. If they
are violated nothing is done. No
reply is sent.

0 1 1 1 1 0 Write, single
address, ver-
ify before
writing, send
acknowledge

Executed normally. Length must
be 4 or less. Otherwise nothing is
done and error code is set to 9.
Same alignment restrictions
apply as for rmw. If they are vio-
lated nothing is done and error
code is set to 10. If an AHB error
occurs error code is set to 1.
Reply is sent.

0 1 1 1 1 1 Write, incre-
menting
address, ver-
ify before
writing, send
acknowledge

Executed normally. Length must
be 4 or less. Otherwise nothing is
done and error code is set to 9.
Same alignment restrictions
apply as for rmw. If they are vio-
lated nothing is done and error
code is set to 10. If an AHB error
occurs error code is set to 1.
Reply is sent.

1 0 - - - - Unused Stored to DMA-channel.

1 1 - - - - Unused Stored to DMA-channel.

Table 9. GRSPW hardware RMAP handling of different packet type and command fields.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Command Action

Reserved
Command
/ Response

Write /
Read

Verify
data
before
write

Acknow-
ledge

Increment
Address
Copyright Aeroflex Gaisler AB December 2008, Version 1.0.2

21 GRSPW / GRSPW-FT

GAISLER
2.7 AMBA interface

The AMBA interface consists of an APB interface, an AHB master interface and DMA FIFOs. The
APB interface provides access to the user registers which are described in section 2.9. The DMA
engines have 32-bit wide FIFOs to the AHB master interface which are used when reading and writ-
ing to the bus.
The transmitter DMA engine reads data from the bus in bursts which are half the FIFO size in length.
A burst is always started when the FIFO is half-empty or if it can hold the last data for the packet. The
burst containing the last data might have shorter length if the packet is not an even number of bursts in
size.
The receiver DMA works in the same way except that it checks if the FIFO is half-full and then per-
forms a burst write to the bus which is half the fifo size in length. The last burst might be shorter. If
the rmap or rxunaligned VHDL generics are set to 1 the interface also handles byte accesses. Byte
accesses are used for non word-aligned buffers and/or packet lengths that are not a multiple of four
bytes. There might be 1 to 3 single byte writes when writing the beginning and end of the received
packets.

2.7.1 APB slave interface

As mentioned above, the APB interface provides access to the user registers which are 32-bits in
width. The accesses to this interface are required to be aligned word accesses. The result is undefined
if this restriction is violated.

2.7.2 AHB master interface

The core contains a single master interface which is used by both the transmitter and receiver DMA
engines. The arbitration algorithm between the channels is done so that if the current owner requests
the interface again it will always acquire it. This will not lead to starvation problems since the DMA
engines always deassert their requests between accesses.
 if rmap and rxunaligned are disabledThe AHB accesses can be of size byte, halfword and word
(HSIZE = 0x000, 0x001, 0x010) otherwise. Byte and halfword accesses are always NONSEQ.
The burst length will be half the AHB FIFO size except for the last transfer for a packet which might
be smaller. Shorter accesses are also done during descriptor reads and status writes.
The AHB master also supports non-incrementing accesses where the address will be constant for sev-
eral consecutive accesses. HTRANS will always be NONSEQ in this case while for incrementing
accesses it is set to SEQ after the first access. This feature is included to support non-incrementing
reads and writes for RMAP.
If the core does not need the bus after a burst has finished there will be one wasted cycle (HTRANS =
IDLE).
BUSY transfer types are never requested and the core provides full support for ERROR, RETRY and
SPLIT responses.

2.8 Synthesis and hardware

2.8.1 Clock-generation

Figure 8 shows the clock recovery scheme for the receiver. Data and strobe are coupled directly from
their pads to an xor gate which generates the clock. The output from the xor is then connected to a
Copyright Aeroflex Gaisler AB December 2008, Version 1.0.2

22 GRSPW / GRSPW-FT

GAISLER
clock network. The specific type of clock network depends on the technology used. The xor gate is
actually all that logically belongs to the Rx clock recovery module in figure 8.
The clock output drives all flip-flops in the receiver module found in figure 4. The data signal which
is used for generating the clock is also coupled to the data inputs of several flip-flops clocked by the
Rx clock as seen in figure 8. Care must be taken so that the delay from the data and strobe signals
through the clock network are longer than the delay to the data input + setup time.

The transmitter clock is generated from the txclk input. A separate clock input is used to allow the
transmitter to be run at much higher frequencies than the system clock. The SpaceWire node contains
a clock-divider which divides the txclk signal to the wanted frequency. The transmitter clock should
be 10 MHz during initialization and any frequency above 2 MHz in the run-state.
There is an input signal called clkdiv10 which sets the clock divisor value during initialization and the
reset value for the user accessible clock divisor register. The user register value will be used in run-
state. The resulting tx clock frequency will be txclk/(clock divisor value+1). So if no clock division is
wanted, the clock divisor should be set to 0.
Since only integer values are allowed for the clock division and the required init-frequency is 10 Mhz
the frequency of the txclk input must be a multiple of 10 MHz. The clock divisor value is 8-bits wide
so the maximum txclk frequency supported is 2.56 GHz (note that there is also a restriction on the
relation between the system and transmit clock frequencies).

2.8.2 Timers

There are two timers in the core: one for generating the 6.4/12.8 us periods and one for disconnect
timing. The system clock frequency must be at least 10 MHz to guarantee disconnect timing limits.
There are two user accessible registers which are used to the set the number of clock cycles used for
the timeout periods. These registers are described in section 2.9.
The reset value for the timer registers can be set in two different ways selected by the usegen VHDL
generic. If usegen is set to 1, the sysfreq VHDL generic is used to generate reset values for the discon-
nect, 6.4 us and 12.8 us timers. Otherwise, the input signals dcrstval and timerrstval will be used as
reset values. If the system clock frequency is 10 MHz or above the disconnect time will be within the
limits specified in the SpaceWire standard.

2.8.3 Synchronization

The VHDL generic nsync selects how many synchronization registers are used between clock
domains. The default is one and should be used when maximum performance is needed. It allows the
transmitter to be clocked 4 times faster than the system clock and the receiver 2 times faster. These are

D

S

D

D

Q

Q

Figure 8. The clocking scheme for the receiver. The clock is generated
Copyright Aeroflex Gaisler AB December 2008, Version 1.0.2

23 GRSPW / GRSPW-FT

GAISLER
theoretical values without consideration for clock skew and jitter. Note also that the receiver clocks
data at both negative and positive edges. Thus, the bitrate is twice as high as the clock-rate.
The synchronization limits the Tx and Rx clocks to be at most 4 and 2 times faster than the system
clock. But it might not be possible to achieve such high clock rates for the Tx and Rx clocks for all
technologies.
The asynchronous reset to the receiver clock domain has to have a maximum delay of one receiver
clock cycle to ensure correct operation. This is needed because the receiver uses has a completely
asynchronous reset. To make sure that nothing bad happens the is a synchronous reset guard which
prevents any signals from being assigned before all registers have their reset signals released.

2.8.4 Fault-tolerance

The core can optionally be implemented with fault-tolerance against SEU errors in the FIFO memo-
ries. The fault-tolerance is enabled through the ft VHDL generic. Possible options are byte parity pro-
tection (ft = 1) or TMR registers (ft = 2). Note: the GPL version of GRLIB does not include fault-
tolerance, and the core will not work unless the ft VHDL generic is 0.

2.8.5 Synthesis

Since the receiver and transmitter may run on very high frequency clocks their clock signals have
been coupled through a clock buffer with a technology wrapper. This clock buffer will utilize a low
skew net available in the selected technology for the clock.
The clock buffer will also enable most synthesis tools to recognize the clocks and it is thus easier to
find them and place constraints on them. The fact there are three clock domains in the GRSPW of
which all are possibly high frequency clocks makes it necessary to declare all paths between the clock
domains as false paths.
In Synplify this is most easily done by declaring all the clocks to be in different clockgroups in the sdc
file (if Synplify does not automatically put them in different groups). This will disable any timing
considerations between the clock domains and these constraints will also propagate to the place and
route tool.
The type of clock buffer is selectable with a VHDL generic and the value zero provides a normal feed
through which lets the synthesis tool infer the type of net used.

2.8.6 Technology mapping

The core has three generics for technology mapping: tech, techfifo and memtech. Tech selects the tech-
nology used for the clock buffers and also adds reset to some registers for technologies where they
would otherwise cause problems with gate-level simulations. Techfifo selects whether memtech
should be used to select the technology for the FIFO memories (the RMAP buffer is not affected by
the this generic) or if they should be inferred. Tech and memtech can be set to any value from 0 to
NTECH as defined in the GRLIB.TECH package.

2.8.7 RAM usage

The core maps all RAM memories on the syncram_2p component if the ft generic is 0 and to the
syncram_2pft component for other values. The syncrams are located in the technology mapping
library (TECHMAP). The organization of the different memories are described below. If techfifo and/
or memtech is set to 0 the synthesis tool will infer the memories. Either RAM blocks or flip-flops will
be used depending on the tool and technology. The number of flip-flops used is syncram depth x syn-
Copyright Aeroflex Gaisler AB December 2008, Version 1.0.2

24 GRSPW / GRSPW-FT

GAISLER
cram width for all the different memories. The receiver AHB FIFO with fifosize 32 will for example
use 1024 flips-flops.
Receiver ahb FIFO
The receiver AHB fifo consists of one syncram_2p block with a width of 32-bits. The depth is deter-
mined by the configured FIFO depth. Table 10 shows the syncram organization for the allowed con-
figurations.

Transmitter ahb FIFO
The transmitter AHB fifo consists of one syncram_2p block with a width of 32-bits. The depth is
determined by the configured FIFO depth. Table 11 shows the syncram organization for the allowed
configurations.

Receiver N-Char FIFO
The receiver N-Char fifo consists of one syncram_2p block with a width of 9-bits. The depth is deter-
mined by the configured FIFO depth. Table 12 shows the syncram organization for the allowed con-
figurations.

Table 10. syncram_2p sizes for GRSPW receiver AHB FIFO.

Fifosize Syncram_2p organization

4 4x32

8 8x32

16 16x32

32 32x32

Table 11. syncram_2p sizes for transmitter AHB FIFO.

Fifosize Syncram_2p organization

4 4x32

8 8x32

16 16x32

32 32x32

Table 12. syncram_2p sizes for the receiver N-Char FIFO.

Fifosize Syncram_2p organization

16 16x9

32 32x9

64 64x9
Copyright Aeroflex Gaisler AB December 2008, Version 1.0.2

25 GRSPW / GRSPW-FT

GAISLER
RMAP buffer
The RMAP buffer consists of one syncram_2p block with a width of 8-bits. The depth is determined
by the number of configured RMAP buffers. Table 13 shows the syncram organization for the allowed
configurations.

2.9 Registers

The core is programmed through registers mapped into APB address space.

Table 13. syncram_2p sizes for RMAP buffer memory.

RMAP buffers Syncram_2p organization

2 64x8

4 128x8

8 256x8

Table 14. GRSPW registers

APB address offset Register

0x0 Control

0x4 Status/Interrupt-source

0x8 Node address

0xC Clock divisor

0x10 Destination key

0x14 Time

0x18 Timer and Disconnect

0x20 DMA channel 1 control/status

0x24 DMA channel 1 rx maximum length

0x28 DMA channel 1 transmit descriptor table address.

0x2C DMA channel 1 receive descriptor table address.

Table 15. GRSPW control register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RA RX RC RESERVED PS NP RD RE RESERVED TR TT LI TQ RS PM TI IE AS LS LD

31 RMAP available (RA) - Set to one if the RMAP command handler is available. Only readable.
30 RX unaligned access (RX) - Set to one if unaligned writes are available for the receiver. Only read-

able.
29 RMAP CRC available (RC) - Set to one if RMAP CRC is enabled in the core. Only readable.
28: 27 RESERVED
26 Number of ports (PO) - The number of available SpaceWire ports minus one. Only readable.
Copyright Aeroflex Gaisler AB December 2008, Version 1.0.2

26 GRSPW / GRSPW-FT

GAISLER
25: 22 RESERVED
21 Port select (PS) - Selects the active port when the no port force bit is zero. ‘0’ selects the port con-

nected to data and strobe on index 0 while ‘1’ selects index 1. Only available if the ports VHDL
generic is set to 2. Reset value: ‘0’.

20 No port force (NP) - Disable port force. When disabled the port select bit cannot be used to select the
active port. Instead, it is automatically selected by checking the activity on the respective receive
links. Only available if the ports VHDL generic is set to 2. Reset value: ‘0’.

19: 18 RESERVED
17 RMAP buffer disable (RD) - If set only one RMAP buffer is used. This ensures that all RMAP com-

mands will be executed consecutively. Only available if the rmap VHDL generic is set to 1. Reset
value: ‘0’.

16 RMAP Enable (RE) - Enable RMAP command handler. Only available if rmap VHDL generic is set
to 1. Reset value: ‘1’.

15: 12 RESERVED
11 Time Rx Enable (TR) - Enable time-code receptions. Reset value: ‘0’.
10 Time Tx Enable (TT) - Enable time-code transmissions. Reset value: ‘0’.
9 Link error IRQ (LI) - Generate interrupt when a link error occurs. Not reset.
8 Tick-out IRQ (TQ) - Generate interrupt when a valid time-code is received. Not reset.
7 RESERVED
6 Reset (RS) - Make complete reset of the SpaceWire node. Self clearing. Reset value: ‘0’.
5 Promiscuous Mode (PM) - Enable Promiscuous mode. Reset value: ‘0’.
4 Tick In (TI) - The host can generate a tick by writing a one to this field. This will increment the timer

counter and the new value is transmitted after the current character is transferred. A tick can also be
generated by asserting the tick_in signal. Reset value: ‘0’.

3 Interrupt Enable (IE) - If set, an interrupt is generated when one or both of bit 8 to 9 is set and its cor-
responding event occurs. Reset value: ‘0’.

2 Autostart (AS) - Automatically start the link when a NULL has been received. Not reset.
1 Link Start (LS) - Start the link, i.e. allow a transition from ready to started state. Reset value: ‘0’ if

the RMAP command handler is not available. If available the reset value is set to the value of the
rmapen input signal.

0 Link Disable (LD) - Disable the SpaceWire codec. Reset value: ‘0’.

Table 16. GRSPW status register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED LS RESERVED AP EE IA WE PE DE ER CE TO

31: 24 RESERVED
23: 21 Link State (LS) - The current state of the start-up sequence. 0 = Error-reset, 1 = Error-wait, 2 =

Ready, 3 = Started, 4 = Connecting, 5 = Run. Reset value: 0.
20: 10 RESERVED
9 Active port (AP) - Shows the currently active port. ‘0’ = Port 0 and ‘1’ = Port 1 where the port num-

bers refer to the index number of the data and strobe signals. Only available if the ports generic is set
to 2.

8 Early EOP/EEP (EE) - Set to one when a packet is received with an EOP after the first byte for a
non-rmap packet and after the second byte for a RMAP packet. Cleared when written with a one.
Reset value: ‘0’.

Table 15. GRSPW control register
Copyright Aeroflex Gaisler AB December 2008, Version 1.0.2

27 GRSPW / GRSPW-FT

GAISLER
7 Invalid Address (IA) - Set to one when a packet is received with an invalid destination address field,
i.e it does not match the nodeaddr register. Cleared when written with a one. Reset value: ‘0’.

6 Write synchronization Error (WE) - A synchronization problem has occurred when receiving N-
Chars. Cleared when written with a one. Reset value: ‘0’.

5 RESERVED
4 Parity Error (PE) - A parity error has occurred. Cleared when written with a one. Reset value: ‘0’.
3 Disconnect Error (DE) - A disconnection error has occurred. Cleared when written with a one. Reset

value: ‘0’.
2 Escape Error (ER) - An escape error has occurred. Cleared when written with a one. Reset value: ‘0’.
1 Credit Error (CE) - A credit has occurred. Cleared when written with a one. Reset value: ‘0’.
0 Tick Out (TO) - A new time count value was received and is stored in the time counter field. Cleared

when written with a one. Reset value: ‘0’.

Table 17. GRSPW node address register
31 8 7 0

RESERVED NODEADDR

31: 8 RESERVED
7: 0 Node address (NODEADDR) - 8-bit node address used for node identification on the SpaceWire

network. Reset value: 254.

Table 18. GRSPW clock divisor register
31 16 15 8 7 0

RESERVED CLKDIVSTART CLKDIVRUN

31: 16 RESERVED
15: 8 Clock divisor startup (CLKDIVSTART) - 8-bit Clock divisor value used for the clock-divider

during startup (link-interface is in other states than run). The actual divisor value is Clock Divi-
sor register + 1. Reset value: clkdiv10 input signal.

7: 0 Clock divisor run (CLKDIVRUN) - 8-bit Clock divisor value used for the clock-divider when the
link-interface is in the run-state. The actual divisor value is Clock Divisor register + 1. Reset value:
clkdiv10 input signal.

Table 19. GRSPW destination key
31 8 7 0

RESERVED DESTKEY

31: 8 RESERVED
7: 0 Destination key (DESTKEY) - RMAP destination key. Only available if the rmap VHDL generic is

set to 1. Reset value: 0.

Table 16. GRSPW status register
Copyright Aeroflex Gaisler AB December 2008, Version 1.0.2

28 GRSPW / GRSPW-FT

GAISLER
Table 20. GRSPW time register
31 8 7 6 5 0

RESERVED TCTRL TIMECNT

31: 8 RESERVED
7: 6 Time control flags (TCTRL) - The current value of the time control flags. Sent with time-code

resulting from a tick-in. Received control flags are also stored in this register. Reset value: ‘0’.
5: 0 Time counter (TIMECNT) - The current value of the system time counter. It is incremented for each

tick-in and the incremented value is transmitted. The register can also be written directly but the
written value will not be transmitted. Received time-counter values are also stored in this register.
Reset value: ‘0’.

Table 21. GRSPW timer and disconnect register.
31 22 21 12 11 0

RESERVED DISCONNECT TIMER64

31: 22 RESERVED
21: 12 Disconnect (DISCONNECT) - Used to generate the 850 ns disconnect time period. The disconnect

period is the number is the number of clock cycles in the disconnect register + 3. So to get a 850 ns
period, the smallest number of clock cycles that is greater than or equal to 850 ns should be calcu-
lated and this values - 3 should be stored in the register. Reset value is set with VHDL generics or
with input signals depending on the value of the usegen VHDL generic.

11: 0 6.4 us timer (TIMER64) - Used to generate the 6.4 and 12.8 us time periods. Should be set to the
smallest number of clock cycles that is greater than or equal to 6.4 us. Reset value is set with VHDL
generics or with input signals depending on the value of the usegen VHDL generic.

Table 22. GRSPW dma control register
31 17 16 15 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED LE RESERVED NS RD RX AT RA TA PR PS AI RI TI RE TE

31: 17 RESERVED
16 Link error disable (LE) - Disable transmitter when a link error occurs. No more packets will be trans-

mitted until the transmitter is enabled again. Reset value: ‘0’.
15: 13 RESERVED
12 No spill (NS) - If cleared, packets will be discarded when a packet is arriving and there are no active

descriptors. If set, the GRSPW will wait for a descriptor to be activated.
11 Rx descriptors available (RD) - Set to one, to indicate to the GRSPW that there are enabled descrip-

tors in the descriptor table. Cleared by the GRSPW when it encounters a disabled descriptor: Reset
value: ‘0’.

10 RX active (RX) - Is set to ‘1’ if a reception to the DMA channel is currently active otherwise it is ‘0’.
Only readable.

9 Abort TX (AT) - Set to one to abort the currently transmitting packet and disable transmissions. If no
transmission is active the only effect is to disable transmissions. Self clearing. Reset value: ‘0’.

8 RX AHB error (RA) - An error response was detected on the AHB bus while this receive DMA
channel was accessing the bus. Cleared when written with a one. Reset value: ‘0’.
Copyright Aeroflex Gaisler AB December 2008, Version 1.0.2

29 GRSPW / GRSPW-FT

GAISLER
7 TX AHB error (TA) - An error response was detected on the AHB bus while this transmit DMA
channel was accessing the bus. Cleared when written with a one. Reset value: ‘0’.

6 Packet received (PR) - This bit is set each time a packet has been received. never cleared by the SW-
node. Cleared when written with a one. Reset value: ‘0’.

5 Packet sent (PS) - This bit is set each time a packet has been sent. Never cleared by the SW-node.
Cleared when written with a one. Reset value: ‘0’.

4 AHB error interrupt (AI) - If set, an interrupt will be generated each time an AHB error occurs when
this DMA channel is accessing the bus. Not reset.

3 Receive interrupt (RI) - If set, an interrupt will be generated each time a packet has been received.
This happens both if the packet is terminated by an EEP or EOP. Not reset.

2 Transmit interrupt (TI) - If set, an interrupt will be generated each time a packet is transmitted. The
interrupt is generated regardless of whether the transmission was successful or not. Not reset.

1 Receiver enable (RE) - Set to one when packets are allowed to be received to this channel. Reset
value: ‘0’.

0 Transmitter enable (TE) - Write a one to this bit each time new descriptors are activated in the table.
Writing a one will cause the SW-node to read a new descriptor and try to transmit the packet it points
to. This bit is automatically cleared when the SW-node encounters a descriptor which is disabled.
Reset value: ‘0’.

Table 23. GRSPW RX maximum length register.
31 25 24 0

RESERVED RXMAXLEN

31: 25 RESERVED
24: 0 RX maximum length (RXMAXLEN) - Receiver packet maximum length in bytes. Only bits 24 - 2

are writable. Bits 1 - 0 are always 0. Not reset.

Table 24. GRSPW transmitter descriptor table address register.
31 10 9 4 3 0

DESCBASEADDR DESCSEL RESERVED

31: 10 Descriptor table base address (DESCBASEADDR) - Sets the base address of the descriptor table.
Not reset.

9: 4 Descriptor selector (DESCSEL) - Offset into the descriptor table. Shows which descriptor is cur-
rently used by the GRSPW. For each new descriptor read, the selector will increase with 16 and
eventually wrap to zero again. Reset value: 0.

3: 0 RESERVED

Table 25. GRSPW receiver descriptor table address register.
31 10 9 3 2 0

DESCBASEADDR DESCSEL RESERVED

31: 10 Descriptor table base address (DESCBASEADDR) - Sets the base address of the descriptor table.
Not reset.

Table 22. GRSPW dma control register
Copyright Aeroflex Gaisler AB December 2008, Version 1.0.2

30 GRSPW / GRSPW-FT

GAISLER
2.10 Vendor and device identifiers

The core has vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x1F. For description of
vendor and device identifiers see GRLIB IP Library User’s Manual.

9: 3 Descriptor selector (DESCSEL) - Offset into the descriptor table. Shows which descriptor is cur-
rently used by the GRSPW. For each new descriptor read, the selector will increase with 8 and even-
tually wrap to zero again. Reset value: 0.

2: 0 RESERVED

Table 25. GRSPW receiver descriptor table address register.
Copyright Aeroflex Gaisler AB December 2008, Version 1.0.2

31 GRSPW / GRSPW-FT

GAISLER
2.11 Configuration options

Table 26 shows the configuration options of the core (VHDL generics).

Table 26. Configuration options

Generic Function Allowed range Default

tech Technology for clock buffers 0 - NTECH inferred

hindex AHB master index. 0 - NAHBMST-1 0

pindex APB slave index 0 - NAPBSLV-1 0

paddr Addr field of the APB bar. 0 - 16#FFF# 0

pmask Mask field of the APB bar. 0 - 16#FFF# 16#FFF#

pirq Interrupt line used by GRSPW. 0 - NAHBIRQ-1 0

sysfreq Frequency of clock input “clk” in kHz. - 10000

usegen Use values calculated from sysfreq generic as reset values
for 6.4 us timer and disconnect timer.

0 - 1 1

nsync Number of synchronization registers. 1 - 2 1

rmap Include hardware RMAP command handler. RMAP CRC
logic will also be added.

0 - 1 0

rmapcrc Enable RMAP CRC logic. 0 - 1 0

fifosize1 Sets the number of entries in the 32-bit receiver and trans-
mitter AHB fifos.

4 - 32 32

fifosize2 Sets the number of entries in the 9-bit receiver fifo (N-
Char fifo).

16 - 64 64

rxclkbuftype Select clock buffer type for receiver clock. 0 does not
select a buffer, instead i connects the input directly to the
output (synthesis tools may still infer a buffer). 1 selects
hardwired clock while 2 selects routed clock.

0 - 2 0

rxunaligned Receiver unaligned write support. If set, the receiver can
write any number of bytes to any start address without
writing any excessive bytes.

0 - 1 0

rmapbufs Sets the number of buffers to hold RMAP replies. 2 - 8 4

ft Enable fault-tolerance against SEU errors 0 - 2 0

scantest Enable support for scan test 0 - 1 0

techfifo Implement FIFO with RAM cells (1) or flip-flops (0) 0 - 1 1

netlist Use netlist rather then RTL code 0 - 1 0

ports Sets the number of ports 1 - 2 1

memtech Technology for RAM blocks 0 - NTECH inferred
Copyright Aeroflex Gaisler AB December 2008, Version 1.0.2

32 GRSPW / GRSPW-FT

GAISLER
2.12 Signal descriptions

Table 27 shows the interface signals of the core (VHDL ports).

2.13 Library dependencies

Table 28 shows libraries used when instantiating the core (VHDL libraries).

2.14 Instantiation

This example shows how the core can be instantiated.
Normally di, si, do and so should be connected to input and output pads configured with LVDS driv-
ers. How this is done is technology dependent.
The GRSPW in the example is configured with non-ft memories of size 4, 64 and 8 entries for AHB
FIFOs, N-Char FIFO and RMAP buffers respectively. The system frequency (clk) is 40 MHz and the
transmitter frequency (txclk) is 20 MHz.

Table 27. Signal descriptions

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

TXCLK N/A Input Transmitter default run-state clock -

AHBMI * Input AMB master input signals -

AHBMO * Output AHB master output signals -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

SWNI D Input Data input -

S Input Strobe input -

TICKIN Input Time counter tick input High

CLKDIV10 Input Clock divisor value used during initialization
and as reset value for the clock divisor register

-

RMAPEN Input Reset value for the rmapen control register bit -

DCRSTVAL Input Reset value for disconnect timer. Used if usegen
VHDL generic is set to 0.

-

TIMERRSTVAL Input Reset value for 6.4 us timer. Used if usegen
VHDL generic is set to 0.

-

SWNO D Output Data output -

S Output Strobe output -

TICKOUT Output Time counter tick output High

* see GRLIB IP Library User’s Manual

Table 28. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER SPACEWIRE Signals, component Component and record declarations.
Copyright Aeroflex Gaisler AB December 2008, Version 1.0.2

33 GRSPW / GRSPW-FT

GAISLER
The memory technology is inferred which means that the synthesis tool will select the appropriate
components. The rx clk buffer uses a hardwired clock.
The hardware RMAP command handler is enabled which also automatically enables rxunaligned and
rmapcrc. The Finally, the DMA channel interrupt line is 2 and the number of synchronization registers
is 1.
library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.spacewire.all;

entity spacewire_ex is
 port (
 clk : in std_ulogic;
 rstn : in std_ulogic;

 -- spacewire signals
 di : in std_logic_vector(1 downto 0);
 si : in std_logic_vector(1 downto 0);
 do : out std_logic_vector(1 downto 0);
 so : out std_logic_vector(1 downto 0));
end;

architecture rtl of spacewire_ex is

 -- AMBA signals
 signal apbi : apb_slv_in_type;
 signal apbo : apb_slv_out_vector := (others => apb_none);
 signal ahbmi : ahb_mst_in_type;
 signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

 -- Spacewire signals
 signal swni : grspw_in_type;
 signal swno : grspw_out_type;

begin

 -- AMBA Components are instantiated here
 ...

 -- GRSPW
 sw0 : grspw
 generic map (tech => inferred, hindex => 5, pindex => 7, paddr => 7, nsync => 1,
 rmap => 1, rxunaligned => 0, rmapcrc => 0, rxclkbuftype => 0, sysfreq => 40000,
 pirq => 2, fifosize1 => 4, fifosize2 => 64, rmapbufs => 8, ft => 0, ports => 2)
 port map (rstn, clk, apbi, apbo(7), ahbmi, ahbmo(5), swni, swno);

swni.rmapen <= ‘1’;
swni.clkdiv10 <= “00000001”;
swni.tickin <= ‘0’;
swni.d(0) <= di(0);
swni.s(0) <= si(0);
do(0) <= swno.d(0);
so(0) <= swno.s(0);

 swni.d(1) <= di(1);
swni.s(1) <= si(1);
do(1) <= swno.d(1);
so(1) <= swno.s(1);

end;
Copyright Aeroflex Gaisler AB December 2008, Version 1.0.2

34 GRSPW / GRSPW-FT

GAISLER
2.15 API

A simple Application Programming Interface (API) is provided together with the GRSPW. The API is
located in $(GRLIB)/software/spw. The files are rmapapi.c, spwapi.c, rmapapi.h, spwapi.h. The
spwapi.h file contains the declarations of the functions used for configuring the GRSPW and transfer-
ring data. The corresponding definitions are located in spwapi.c. The rmapapi is structured in the
same manner and contains a function for building RMAP packets.
These functions could be used as a simple starting point for developing drivers for the GRSPW. The
different functions are described in this section.

2.15.1 GRSPW Basic API

The basic GRSPW API is based on a struct spwvars which stores all the information for a single
GRSPW core. The information includes its address on the AMBA bus as well as SpaceWire parame-
ters such as node address and clock divisor. A pointer to this struct is used as a input parameter to all
the functions. If several cores are used, a separate struct for each core is created and used when the
specific core is accessed.

The following functions are available in the basic API:

int spw_setparam(int nodeaddr, int clkdiv, int destkey, int nospill, int timetxen, int
timerxen, int rxmaxlen, int spwadr, struct spwvars *spw);

Table 29. The spwvars struct

Field Description Allowed range

regs Pointer to the GRSPW -

nospill The nospill value used for the core. 0 - 1

rmap Indicates whether the core is configured with RMAP. Set by
spw_init.

0 - 1

rxunaligned Indicates whether the core is configured with rxunaligned support.
Set by spw_init.

0 - 1

rmapcrc Indicates whether the core is configured with RMAPCRC support.
Set by spw_init.

0 - 1

clkdiv The clock divisor value used for the core. 0 - 255

nodeaddr The node address value used for the core. 0 - 255

destkey The destination key value used for the core. 0 - 255

rxmaxlen The Receiver maximum length value used for the core. 0 - 33554431

rxpnt Pointer to the next receiver descriptor. 0 - 127

rxchkpnt Pointer to the next receiver descriptor that will be polled. 0 - 127

txpnt Pointer to the next transmitter descriptor. 0 - 63

txchkpnt Pointer to the next transmitter descriptor that will be polled. 0 - 63

timetxen The timetxen value used for this core. 0 - 1

timerxen The timerxen value used for this core. 0 - 1

txd Pointer to the transmitter descriptor table. -

rxd Pointer to the receiver descriptor table -
Copyright Aeroflex Gaisler AB December 2008, Version 1.0.2

35 GRSPW / GRSPW-FT

GAISLER
Used for setting the different parameters in the spwvars struct. Should always be run first after creat-
ing a spwvars struct. This function only initializes the struct. Does not write anything to the
SpaceWire core.

int spw_init(struct spwvars *spw);

Initializes the GRSPW core located at the address set in the struct spw. Sets the following registers:
node address, destination key, clock divisor, receiver maximum length, transmitter descriptor table
address, receiver descriptor table address, ctrl and dmactrl. All bits are set to the values found in the
spwvars struct. If a register bit is not present in the struct it will be set to zero. The descriptor tables
are allocated to an aligned area using malloc. The status register is cleared and lastly the link interface
is enabled. The run state frequency will be set according to the value in clkdiv.

Table 30. Return values for spw_setparam

Value Description

0 The function completed successfully

1 One or more of the parameters had an illegal value

Table 31. Parameters for spw_setparam

Parameter Description Allowed range

nodeaddr Sets the node address value of the struct spw passed to the function. 0-255

clkdiv Sets the clock divisor value of the struct spw passed to the function. 0-255

destkey Sets the destination key of the struct spw passed to the function. 0-255

nospill Sets the nospill value of the struct spw passed to the function. 0 - 1

timetxen Sets the timetxen value of the struct spw passed to the function. 0 - 1

timerxen Sets the timerxen value of the struct spw passed to the function. 0 - 1

rxmaxlen Sets the receiver maximum length field of the struct spw passed to
the function.

0 - 225-1

spwadr Sets the address to the GRSPW core which will be associated with
the struct passed to the function.

0 - 232-1

Table 32. Return values for spw_init

Value Description

0 The function completed successfully

1 One or more of the parameters could not be set correctly or the link failed to initialize.
Copyright Aeroflex Gaisler AB December 2008, Version 1.0.2

36 GRSPW / GRSPW-FT

GAISLER
int set_txdesc(int pnt, struct spwvars *spw);

Sets a new address to the transmitter descriptor table address register. Should only be used when no
transmission is active. Also resets the pointers for spw_tx and spw_checktx (Explained in the section
for those functions).

int set_rxdesc(int pnt, struct spwvars *spw);

Sets a new address to the Receiver descriptor table address register. Should only be used when no
transmission is active. Also resets the pointers for spw_rx and spw_checkrx (Explained in the section
for those functions).

Table 33. Parameters for spw_init

Parameter Description Allowed range

spw The spwvars struct associated with the GRSPW core that should be
initialized.

-

Table 34. Return values for spw_txdesc

Value Description

0 The function completed successfully

1 The new address could not be written correctly

Table 35. Parameters for spw_txdesc

Parameter Description Allowed range

pnt The new address to the descriptor table area 0 - 232-1

spw Pointer to the spwvars struct associated with GRSPW core that
should be configured

-

Table 36. Return values for spw_rxdesc

Value Description

0 The function completed successfully

1 The new address could not be written correctly
Copyright Aeroflex Gaisler AB December 2008, Version 1.0.2

37 GRSPW / GRSPW-FT

GAISLER
void spw_disable(struct spwvars *spw);

Disables the GRSPW core (the link disable bit is set to ‘1’).

void spw_enable(struct spwvars *spw);

Enables the GRSPW core (the link disable bit is set to ‘0’).

void spw_start(struct spwvars *spw);

Starts the GRSPW core (the link start bit is set to ‘1’).

void spw_stop(struct spwvars *spw);

Stops the GRSPW core (the link start bit is set to ‘0’).

Table 37. Parameters for spw_rxdesc

Parameter Description Allowed range

pnt The new address to the descriptor table area 0 - 232-1

spw Pointer to the spwvars struct associated with GRSPW core that
should be configured

-

Table 38. Parameters for spw_disable

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that
should be configured

-

Table 39. Parameters for spw_enable

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that
should be configured

-

Table 40. Parameters for spw_start

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that
should be configured

-

Copyright Aeroflex Gaisler AB December 2008, Version 1.0.2

38 GRSPW / GRSPW-FT

GAISLER
int spw_setclockdiv(struct spwvars *spw);

Sets the clock divisor register with the clock divisor value stored in the spwvars struct.

int spw_set_nodeadr(struct spwvars *spw);

Sets the node address register with the node address value stored in the spwvars struct.

int spw_set_rxmaxlength(struct spwvars *spw);

Sets the Receiver maximum length register with the rxmaxlen value stored in the spwvars struct.

Table 41. Parameters for spw_start

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that
should be configured

-

Table 42. Return values for spw_setclockdiv

Value Description

0 The function completed successfully

1 The new clock divisor value is illegal.

Table 43. Parameters for spw_setclockdiv

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that
should be configured

-

Table 44. Return values for spw_set_nodeadr

Value Description

0 The function completed successfully

1 The new node address value is illegal.

Table 45. Parameters for spw_set_nodeadr

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that
should be configured

-

Table 46. Return values for spw_set_rxmaxlength

Value Description

0 The function completed successfully

1 The new node address value is illegal.
Copyright Aeroflex Gaisler AB December 2008, Version 1.0.2

39 GRSPW / GRSPW-FT

GAISLER
int spw_tx(int crc, int skipcrcsize, int hsize, char *hbuf, int dsize, char *dbuf, struct
spwvars *spw);

Transmits a packet. Separate header and data buffers can be used. If CRC logic is available the GSPW
inserts RMAP CRC values after the header and data fields if crc is set to one. This function only sets a
descriptor and initiates the transmission. Spw_checktx must be used to check if the packet has been
transmitted. A pointer into the descriptor table is stored in the spwvars struct to keep track of the next
location to use. It is incremented each time the function returns 0.

int spw_rx(char *buf, struct spwvars *spw);

Enables a descriptor for reception. The packet will be stored to buf. Spw_checkrx must be used to
check if a packet has been received. A pointer in the spwvars struct is used to keep track of the next
location to use in the descriptor table. It is incremented each time the function returns 0.

Table 47. Parameters for spw_set_rxmaxlength

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that
should be configured

-

Table 48. Return values for spw_tx

Value Description

0 The function completed successfully

1 There are no free transmit descriptors currently available

2 There was illegal parameters passed to the function

Table 49. Parameters for spw_tx

Parameter Description Allowed range

crc Set to one to append RMAP CRC after the header and data fields.
Only available if hardware CRC is available in the core.

0 - 1

skipcrcsize The number of bytes in the beginning of a packet that should not be
included in the CRC calculation

0 - 15

hsize The size of the header in bytes 0 - 255

hbuf Pointer to the header data -

dsize The size of the data field in bytes 0 - 224-1

dbuf Pointer to the data area. -

spw Pointer to the spwvars struct associated with GRSPW core that
should transmit the packet

-

Table 50. Return values for spw_rx

Value Description

0 The function completed successfully

1 There are no free receive descriptors currently available
Copyright Aeroflex Gaisler AB December 2008, Version 1.0.2

40 GRSPW / GRSPW-FT

GAISLER
int spw_checkrx(int *size, struct rxstatus *rxs, struct spwvars *spw);

Checks if a packet has been received. When a packet has been received the size in bytes will be stored
in the size parameter and status is found in the rxs struct. A pointer in the spwvars struct is used to
keep track of the location in the descriptor table to poll. It is incremented each time the function
returns nonzero.

int spw_checktx(struct spwvars *spw);

Table 51. Parameters for spw_rx

Parameter Description Allowed range

buf Pointer to the data area. -

spw Pointer to the spwvars struct associated with GRSPW core that
should receive the packet

-

Table 52. Return values for spw_checkrx

Value Description

0 No packet has been received

1 A packet has been received

Table 53. Parameters for spw_checkrx

Parameter Description Allowed range

size When the function returns 1 this variable holds the number of bytes
received

-

rxs When the function returns 1 this variable holds status information -

spw Pointer to the spwvars struct associated with GRSPW core that
should be polled

-

Table 54. The rxstatus struct

Field Description Allowed range

truncated Packet was truncated 0 - 1

dcrcerr Data CRC error bit was set. Only indicates an error if the packet
received was an RMAP packet.

0 - 1

hcrcerr Header CRC error bit was se.t. Only indicates an error if the packet
received was an RMAP packet.

0 - 1

eep Packet was terminated with EEP 0 - 1
Copyright Aeroflex Gaisler AB December 2008, Version 1.0.2

41 GRSPW / GRSPW-FT

GAISLER
Checks if a packet has been transmitted. A pointer is used to keep track of the location in the descrip-
tor table to poll. It is incremented each time the function returns nonzero.

void send_time(struct spwvars *spw);

Sends a new time-code. Increments the time-counter in the GRSPW and transmits the value.

int check_time(struct spwvars *spw);

Check if a new time-code has been received.

int get_time(struct spwvars *spw);

Get the current time counter value.

Table 55. Return values for spw_checktx

Value Description

0 No packet has been transmitted

1 A packet has been correctly transmitted

2 A packet has been incorrectly transmitted

Table 56. Parameters for spw_checktx

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that
should be polled

-

Table 57. Parameters for send time

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that
should be polled

-

Table 58. Return values for check_time

Value Description

0 No time-code has been received

1 A new time-code has been received

Table 59. Parameters for check_time

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that
should be polled

-

Table 60. Return values for get_time

Value Description

0 - 63 Returns the current time counter value
Copyright Aeroflex Gaisler AB December 2008, Version 1.0.2

42 GRSPW / GRSPW-FT

GAISLER
void spw_reset(struct spwvars *spw);

Resets the GRSPW.

void spw_rmapen(struct spwvars *spw);

Enables hardware RMAP. Has no effect if the RMAP command handler is not available in GRSPW.

void spw_rmapdis(struct spwvars *spw);

Disables hardware RMAP. Has no effect if the RMAP command handler is not available in GRSPW

int spw_setdestkey(struct spwvars *spw);

Set the destination key of the GRSPW. Has no effect if the RMAP command handler is not available.
The value from the spwvars struct is used.

Table 61. Parameters for get_time

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that
should be polled

-

Table 62. Parameters for spw_reset

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that
should be reset

-

Table 63. Parameters for spw_rmapen

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that
should be set

-

Table 64. Parameters for spw_rmapdis

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that
should be set

-

Table 65. Return values for spw_setdestkey

Value Description

0 The function completed successfully

1 The destination key parameter in the spwvars struct contains an illegal value
Copyright Aeroflex Gaisler AB December 2008, Version 1.0.2

43 GRSPW / GRSPW-FT

GAISLER
2.15.2 GRSPW RMAP API

The RMAP API contains only one function which is used for building RMAP headers.
int build_rmap_hdr(struct rmap_pkt *pkt, char *hdr, int *size);

Builds a RMAP header to the buffer pointed to by hdr. The header data is taken from the rmap_pkt
struct.

Table 66. Parameters for spw_setdestkey

Parameter Description Allowed range

spw Pointer to the spwvars struct associated with GRSPW core that
should be set.

-

Table 67. Return values for build_rmap_hdr

Value Description

0 The function completed successfully

1 One or more of the parameters contained illegal values

Table 68. Parameters for build_rmap_hdr

Parameter Description Allowed range

pkt Pointer to a rmap_pkt struct which contains the data from which the
header should be built

hdr Pointer to the buffer where the header will be built

spw Pointer to the spwvars struct associated with GRSPW core that
should be set

-

Copyright Aeroflex Gaisler AB December 2008, Version 1.0.2

44 GRSPW / GRSPW-FT

GAISLER
Table 69. rmap_pkt struct fields

Field Description Allowed Range

type Selects the type of packet to build. writecmd, readcmd,
rmwcmd, writerep, readrep,
rmwrep

verify Selects whether the data should be verified before writing yes, no

ack Selects whether an acknowledge should be sent yes, no

incr Selects whether the address should be incremented or not yes, no

destaddr Sets the destination address 0 - 255

destkey Sets the destination key 0 - 255

srcaddr Sets the source address 0 - 255

tid Sets the transaction identifier field 0 - 65535

addr Sets the address of the operation to be performed. The extended
address field is currently always set to 0.

0 - 232-1

len The number of bytes to be writte, read or read-modify-written 0 - 224-1

status Sets the status field 0 - 11

dstspalen Number of source path address bytes to insert before the destination
address

0 - 228

dstspa Pointer to memory holding the destination path address bytes -

srcspalen Number of source path address bytes to insert in a command. For a
reply these bytes are placed before the return address

0 - 12

srcspa Pointer to memory holding the source path address bytes -
Copyright Aeroflex Gaisler AB December 2008, Version 1.0.2

45 GRSPW / GRSPW-FT

Copyright Aeroflex Gaisler AB December 2008, Version 1.0.2

GAISLER

3 Reference documents

[AMBA] AMBA Specification, Rev 2.0, ARM IHI 0011A, 13 May 1999, Issue A, first
release, ARM Limited

[GRLIB] GRLIB IP Library User's Manual, Aeroflex Gaisler, www.aeroflex.com/gaisler
[GRIP] GRLIB IP Core User's Manual, Aeroflex Gaisler, www.aeroflex.com/gaisler
[SPW] ECSS - Space Engineering, SpaceWire - Links, Nodes, Routers and Networks,

ECSS-E-ST-50-12C
[RMAPID] Space Engineering, Protocol Identification, ECSS-E-ST-50-11C
[RMAP] Space Engineering, Remote Memory Access Protocol, ECSS-E-ST-50-11C

4 Ordering information

Ordering information is provided in table 70 and a legend is provided in table 71.

Table 70. Ordering information

Product Source code Netlist Technology

SpaceWire VHDL EDIF/VHDL Any

SpaceWire + RMAP VHDL EDIF/VHDL Any

SpaceWire-FT VHDL EDIF/VHDL Any

SpaceWire-FT + RMAP VHDL EDIF/VHDL Any

Table 71. Ordering legend

Designator Option Description

Product

SpaceWire SpaceWire Codec

SpaceWire + RMAP SpaceWire Codec with RMAP

SpaceWire-FT Fault-Tolerant SpaceWire Codec

SpaceWire-FT + RMAP Fault-Tolerant SpaceWire Codec with RMAP

Source code VHDL RTL VHDL source code

Netlist

EDIF EDIF gate-level netlist

VHDL VHDL gate-level netlist

Technology

AX Axcelerator

RTAX Fault-Tolerant Axcelerator

PROASIC3 ProASIC3

PROASICE ProASICE

FUSION Fusion

IGLOO IGLOO

46 GRSPW / GRSPW-FT

GAISLER
Table of contents

1 Introduction.. 2
1.1 Overview ... 2
1.2 Example application .. 2
1.3 Signal overview... 3
1.4 Implementation characteristics.. 3

2 GRSPW - SpaceWire codec with AHB host Interface and RMAP target 4
2.1 Overview ... 4
2.2 Operation ... 4

2.2.1 Overview... 4
2.2.2 Protocol support .. 5

2.3 Link interface .. 5
2.3.1 Link interface FSM ... 6
2.3.2 Transmitter .. 6
2.3.3 Receiver .. 7
2.3.4 Dual port support .. 8
2.3.5 Time interface ... 8

2.4 Receiver DMA engine... 9
2.4.1 Basic functionality .. 9
2.4.2 Setting up the core for reception ... 9
2.4.3 Setting up the descriptor table address.. 9
2.4.4 Enabling descriptors.. 10
2.4.5 Setting up the DMA control register... 10
2.4.6 The effect to the control bits during reception.. 11
2.4.7 Address recognition and packet handling ... 11
2.4.8 Status bits .. 11
2.4.9 Error handling ... 12
2.4.10 Promiscuous mode .. 12

2.5 Transmitter DMA engine .. 12
2.5.1 Basic functionality .. 13
2.5.2 Setting up the core for transmission.. 13
2.5.3 Enabling descriptors.. 13
2.5.4 Starting transmissions ... 13
2.5.5 The transmission process .. 15
2.5.6 The descriptor table address register... 15
2.5.7 Error handling ... 15

2.6 RMAP.. 16
2.6.1 Fundamentals of the protocol.. 16
2.6.2 Implementation ... 16
2.6.3 Write commands ... 17
2.6.4 Read commands .. 17
2.6.5 RMW commands .. 18
2.6.6 Control .. 18

2.7 AMBA interface .. 21
2.7.1 APB slave interface... 21
2.7.2 AHB master interface ... 21

2.8 Synthesis and hardware ... 21
2.8.1 Clock-generation... 21
2.8.2 Timers ... 22
Copyright Aeroflex Gaisler AB December 2008, Version 1.0.2

47 GRSPW / GRSPW-FT

GAISLER
2.8.3 Synchronization .. 22
2.8.4 Fault-tolerance .. 23
2.8.5 Synthesis ... 23
2.8.6 Technology mapping... 23
2.8.7 RAM usage ... 23

2.9 Registers .. 25
2.10 Vendor and device identifiers .. 30
2.11 Configuration options.. 31
2.12 Signal descriptions .. 32
2.13 Library dependencies .. 32
2.14 Instantiation ... 32
2.15 API... 34

2.15.1 GRSPW Basic API ... 34
2.15.2 GRSPW RMAP API ... 43

3 Reference documents ... 45

4 Ordering information ... 45
Copyright Aeroflex Gaisler AB December 2008, Version 1.0.2

Aeroflex Gaisler AB tel +46 31 7758650
Kungsgatan 12 fax +46 31 421407
411 19 Göteborg sales@gaisler.com
Sweden www.aeroflex.com/gaisler

Copyright © December 2008 Aeroflex Gaisler AB.
All information is provided as is. There is no warranty that it is correct or suitable for any purpose, neither
implicit nor explicit.

Information furnished by Aeroflex Gaisler AB is believed to be accurate and reliable.
However, no responsibility is assumed by Aeroflex Gaisler AB for its use, nor for any infringements of pat-
ents or other rights of third parties which may result from its use.
No license is granted by implication or otherwise under any patent or patent rights of Aeroflex Gaisler AB.

48 GRSPW / GRSPW-FT

Copyright Aeroflex Gaisler AB December 2008, Version 1.0.2

GAISLER

GAISLER

http://www.gaisler.com

	1 Introduction
	1.1 Overview
	1.2 Example application
	1.3 Signal overview
	1.4 Implementation characteristics

	2 GRSPW - SpaceWire codec with AHB host Interface and RMAP target
	2.1 Overview
	2.2 Operation
	2.2.1 Overview
	2.2.2 Protocol support

	2.3 Link interface
	2.3.1 Link interface FSM
	2.3.2 Transmitter
	2.3.3 Receiver
	2.3.4 Dual port support
	2.3.5 Time interface

	2.4 Receiver DMA engine
	2.4.1 Basic functionality
	2.4.2 Setting up the core for reception
	2.4.3 Setting up the descriptor table address
	2.4.4 Enabling descriptors
	2.4.5 Setting up the DMA control register
	2.4.6 The effect to the control bits during reception
	2.4.7 Address recognition and packet handling
	2.4.8 Status bits
	2.4.9 Error handling
	2.4.10 Promiscuous mode

	2.5 Transmitter DMA engine
	2.5.1 Basic functionality
	2.5.2 Setting up the core for transmission
	2.5.3 Enabling descriptors
	2.5.4 Starting transmissions
	2.5.5 The transmission process
	2.5.6 The descriptor table address register
	2.5.7 Error handling

	2.6 RMAP
	2.6.1 Fundamentals of the protocol
	2.6.2 Implementation
	2.6.3 Write commands
	2.6.4 Read commands
	2.6.5 RMW commands
	2.6.6 Control

	2.7 AMBA interface
	2.7.1 APB slave interface
	2.7.2 AHB master interface

	2.8 Synthesis and hardware
	2.8.1 Clock-generation
	2.8.2 Timers
	2.8.3 Synchronization
	2.8.4 Fault-tolerance
	2.8.5 Synthesis
	2.8.6 Technology mapping
	2.8.7 RAM usage

	2.9 Registers
	2.10 Vendor and device identifiers
	2.11 Configuration options
	2.12 Signal descriptions
	2.13 Library dependencies
	2.14 Instantiation
	2.15 API
	2.15.1 GRSPW Basic API
	2.15.2 GRSPW RMAP API

	3 Reference documents
	4 Ordering information

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

