LOW VOLTAGE AUDIO POWER AMPLIFIER

GENERAL DESCRIPTION

JRC

FEATURES Operating Voltage

Gain Range

Load Impedance

Bipolar Technology Package Outline

.

•

•

The NJM2135 is a Low voltage audio power amplifier for speaker drivers. No external coupling capacitors are reguired because of the differential output. The closed loop gain is adjusted by two external resistors. The low supply current in power down mode contributes to the reduction of power consumption of portable batterypowered equipment, cellular phones, for example.

Low Operating Current in Power Down Mode

 $+2V \sim +16V$

 $0.1 \ \mu A typ.$

2.7mA typ.

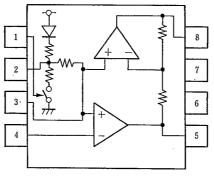
 $8 \sim 200 \Omega$

N JM2135D

NJM2135V

NJM2135M

 Low Operating Current in Normal Operation Mode $V^+=6V, R_L=32\Omega$ GVD=0~43dB, Voice Band NJM2135L

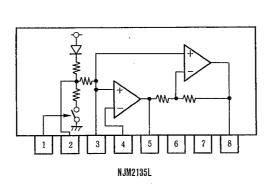


NJM2135R

NJM2135E

PIN CONFIGURATION

Output Power Exceeds 250mW



DIP8, DMP8, EMP8, SIP8, SSOP8, VSP8

7. GND 8. Vour2

-New Japan Radio Co.,Ltd.-

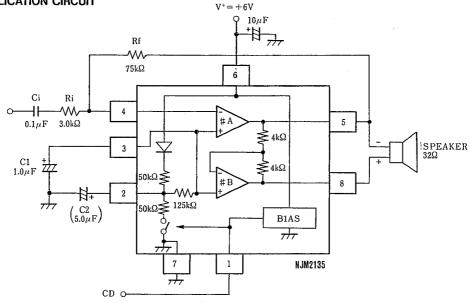
ABSOLUTE MAXIMUM RATINGS			(Ta=25℃)	
PARAMETER	SYMBOL	RATINGS	UNIT	
Supply Voltage	V*	+18	V	
Output Peak Current	I _{op}	±250	mA	
Maximum Input Voltage	V _{IN} (1-4pin)	-0.3, V*+0.3	v	
	V _{IN} (5-8pin)	-0.3, V*+0.3 (In power down)	v	
Power Dissipation	PD	(DIP-8) 500 (SIP-8) 800 (DMP-8) 500(note1) (EMP-8) 500(note1) (SSOP-8) 360(note1) (VSP8) 320	mW	
Operating Temperature Range	Topr	-20~+75	C	
Storage Temperature Range	T _{stg}	-40~+125	C	

(note 1) Mounted on PC Board

ELECTRICAL CHARACTERISTICS

(V*=6V, Ta=25°C, unless otherwise specified)

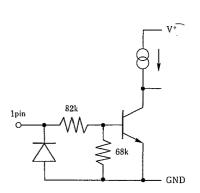
		(1 =01, 12		r r		<i>x</i> emet
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Operating Current	Icci	$V^{+}=3V, R_{L}=\infty, 1pin=2.0V$		2.7	4.0	mΑ
(NO SIGNAL)	I _{CC2}	$V^{+}=16.0V, R_{L}=\infty$, 1pin=2.0V		3.4	5.0	mA
(At Power Down Mode)	I _{CCD}	$V^{+}=3.0V, R_{L}=\infty, 1pin=0.8V$		0.1	1.0	μA
Open Loop Gain	AVI	AMP#A, f<100Hz	77	83		dB
Closed Loop Gain	AV2	AMP#B, f=1kHz, R_L =32 Ω	-0.35		+0.35	dB
	Pol	$V^{+}=3.0V, R_{L}=16\Omega, THD \le 10\%$	55			mW
Output Power	Po2	$V^{+}=6.0V, R_{L}=32\Omega, THD \le 10\%$	250			mW
(Note2)	D-2	$V^{+}=12.0V, R_{L}=100 \Omega, THD \leq 10\%$	400			mW
	Po3	(Note3)				
Total Harmonic Distortion (f=1kHz)	THD1	$V^{+}=6V, R_{L}=32\Omega, Po=125mW, G_{VD}=34dB$		0.5	1.0	%
	THD2	$V^* \ge 3V$, $R_L = 8\Omega$, $Po = 20mW$, $G_{VD} = 12dB$		0.5		%
	THD3	$V^* \ge 12V$, $R_L = 32 \Omega$, $Po = 200 \text{mW}$, $G_{VD} = 34 \text{dB}$		0.6		%
Power Supply Rejection Ratio	PSRR1	C1=∞, C2=0.01 µF, DC	50			dB
(V*=6.0V, △V*=3.0V)	PSRR2	C1=0.1 µF, C2=0, f=1kHz		12		dB
	PSRR3	C1=1.0 µF, C2=5.0 µF, f=1kHz		52		dB
Mute Attenuation	MAT	f=1kHz~20kHz, 1pin=2.0V		70		dB
Output Voltage $(R_f=75k\Omega, DC)$	Vol	$V^{+}=3.0V, R_{L}=16\Omega$	1.00 '	1.15	1.25	v
	Vo2	V*=6.0V		2.55		v
	Vo3	V*=12.0V		5.45		v
Output High Level	V _{OH}	I _{OUT} =-75mA, V ⁺ =2.0~16.0V		۷⁺−۱.۱		v
Output Low Level	Voi.	Iour=75mA, V*=2.0~16.0V		0.21		v
Output DC Offset	∆Vo	$R_1 = 75 k \Omega$, $R_L = 32 \Omega$, $5 pin - 8 pin$	- 30	0	+30	mV
Input Bias Current	I _B	4pin		-30	-200	nA
Equivalent Resistance	R _{+IN}	3pin	100	150	220	kΩ
	R _{REF}	2ріні	18	25	40	kΩ
CD Input Voltage H	VCDII	lpin	2.0		V*	v
CD Input Voltage L	V _{CDL}	Ipin	0.0		0.8	v
CD Input Resistance	R _{CD}	V ⁺ =V _{CD} =16.0V, 1pin	50	90	175	kΩ
· · · · · · · · · · · · · · · · · · ·	·	· · · · · · · · · · · · · · · · · · ·		ــــــ	l	L


-New Japan Radio Co.,Ltd.-

(note 2) NJM2135M, NJM2135E, NJM2135V, NJM2135R : Mounted on Pc board (note 3) NJM2135V, NJM2135R is excluded

5-110

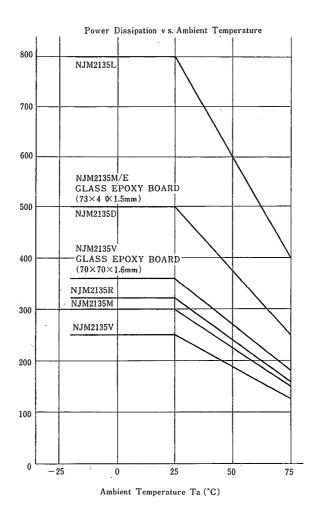
NJM2135



New Japan Radio Co., Ltd.

(note)

- 1 The NJM2135 is active mode during the CD terminal is High level (>2.0V) and it is stand-by mode during the CD terminal is Low level (<0.8V).
- 2.Cl and C2 improve power supply rejection ratio.
- In case of C1 is enough large, C2 is unnecessary.
- 3.Please note that the C1 and C2 make slow power rise up to the NJM2135 regardless the external power supply condition.
- 4.Input current flow on the internal resistor shown in the equivalent circuit of CD terminal.
- 5.No sunbber resistor and capacitor are required are required normally. But the snubber resistor and capacitor are required if the NJM2135 oscillates by condition of PCB layout, stray capacitor and speaker wire length.
- 6.When the NJM2135 change the mode to active or stand-by the CD terminal ON/OFF, the actual operation takes some delay by the charge and discharge of C1,C2.
- 7.When the power turns on in stand-by mode, the NJM2135 operates during charging time of C1 and C2.
- If the supply voltage fluctuate large during the stand-by mode, the mode of active and stand-by of NJM2135 becomes unstable.



5-111

5

POWER DISSIPATION

The allowable power is restricted by the ambient temperature. Characterestics of the allowable power (PD:Powe Dissipation) against ambient temperature is indicated below.

5

MEMO

[CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.