

CBC34123 EnerChip™ RTC

SPI Real-Time Clock/Calendar with Integrated Backup Power

Features

- Integrated rechargeable solid state battery with power-fail detect and automatic switchover, providing greater than 30 hours of RTC backup
- Smallest commercially available RTC with integrated backup power in compact 5mm x 5mm 1.4mm QFN package
- Temperature compensated charge control
- Integrated EnerChip[™] recharged at VDD > 2.5V
- SMT assembly lead-free reflow solder tolerant
- Real time clock provides year, month, day, weekday, hours, minutes, and seconds based on a 32.768 kHz guartz crystal
- Resolution: seconds to years
- Watchdog functionality
- Freely programmable timer and alarm with interrupt capability
- 3-line SPI-bus with separate, but combinable data input and output
- Integrated oscillator load capacitors for C₁ = 7 pF
- Internal Power-On Reset (POR)
- Open-drain interrupt and clock output pins
- Programmable offset register for frequency adjustment
- Eco-friendly, RoHS compliant tested

Applications

- Wireless sensors and RFID tags and other powered, low duty cycle applications.
- **Power bridging** to provide uninterruptible RTC function during exchange of main batteries.
- Consumer appliances that have real-time clocks; provides switchover power from main supply to backup battery.
- Business and industrial systems such as: network routers, point-of-sale terminals, singleboard computers, test equipment, multi-function printers, industrial controllers, and utility meters.
 - Time keeping application
 - Battery powered devices
 - Metering
 - High duration timers
 - Daily alarms
 - Low standby power applications

5mm x 5mm x 1.4mm 16-QFN Package

General Description

The EnerChip RTC CBC34123-M5C combines a Real-Time Clock (RTC) and calendar optimized for low power applications with an integrated rechargeable solid state backup battery and all power management functions. The EnerChip RTC ensures a seamless transition from main power to backup power in the event of power loss. The integrated power management circuit ensures thousands of charge-discharge cycles from the integrated EnerChip and manages battery charging, discharge cutoff, power switchover, and temperature compensation to maximize the service life of the device. The CBC34123 provides greater than 30 hours of backup time in the event main power is interrupted. Typical blackout times are less than 4 hours. Longer backup time can be achieved by adding an external EnerChip to the VCHG pin. The EnerChip has extremely low self-discharge, recharges quickly, is non-flammable, and RoHS-compliant. The EnerChip is charged automatically anytime VDD is above 2.5V.

Data is transferred serially via a Serial Peripheral Interface (SPI-bus) with a maximum data rate of 6.25 Mbit/s. Alarm and timer functions provide the option to generate a wake-up signal on an interrupt pin. An offset register allows fine tuning of the clock.

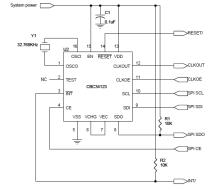


Figure 1: CBC34123 Pin-out Diagram

CBC34123 EnerChip[™] RTC

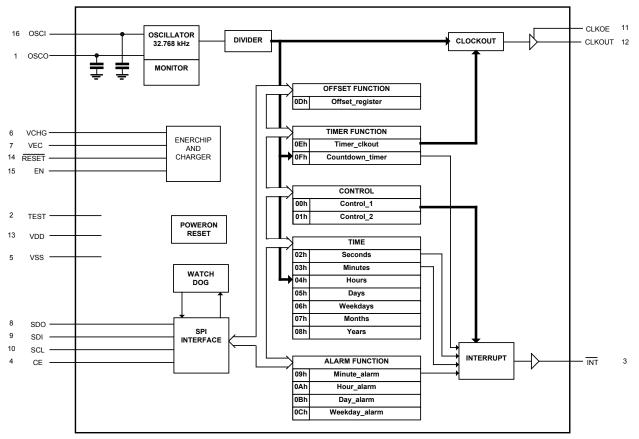
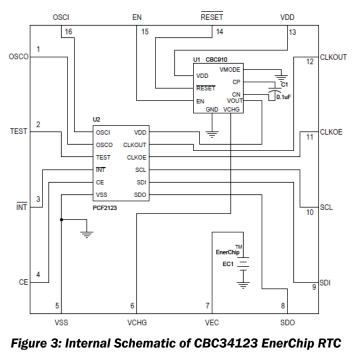



Figure 2: CBC34123 Block Diagram with Registers

Pin Number	Label	Description
1	0SC0	Oscillator output; high-impedance node; minimize wire length between quartz and package
2	TEST	Test pin; not user accessible; connect to VSS or leave floating (internally pulled down)
3	INT/	Interrupt output (open-drain; active LOW)
4	CE	Chip enable input (active HIGH) with internal pull down
5	VSS	Ground
6	VCHG	4.1V (typical) charging source - connect to VEC and/or optional EnerChip(s) for extended backup time
7	VEC	Positive terminal of integrated thin film battery - connect only to VCHG via PCB trace
8	SDO	Serial data output, push-pull; high-impedance when not driving; can be con- nected to SDI for single wire data line
9	SDI	Serial data input; may float when CE is inactive
10	SCL	Serial clock input; may float when CE is inactive
11	CLKOE	CLKOUT enable or disable pin; enable is active HIGH; connect to VSS for low power operation
12	CLKOUT	Clock output (open-drain)
13	VDD	Supply voltage; positive or negative steps in VDD can affect oscillator perfor- mance; recommend 100nF decoupling close to the device (see Fig. 30)
14	RESET/	Output signal indicating RTC is operating in backup power mode
15	EN	Charge pump enable; activates VCHG 4.1V (typ.) charging source
16	OSCI	Oscillator input; high-impedance node; minimize wire length between quartz and package

CBC34123 Input/Output Descriptions

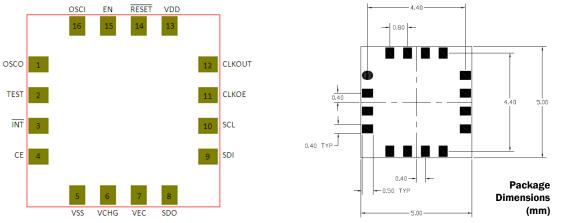


Figure 4: CBC34123 Package (left: top view, looking through package; right: pad dimensions)

EnerChip Properties

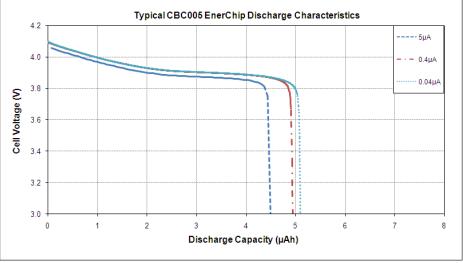
Energy capacity (typical):	5µAh
Recharge time to 80%:	10 minutes
Charge/discharge cycles:	>5000 to 10% depth-of-discharge
Operating temperature:	-30°C to +70°C
Storage temperature:	-40°C to +125°C
Minimum VDD to charge EnerChip:	2.5V

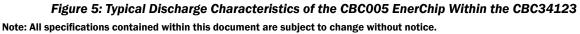
©2013-2014 Cymbet Corporation • Tel: +1-763-633-1780 • www.cymbet.com

Absolute Maximum Ratings

PARAMETER / PIN	CONDITION	MIN	TYPICAL	MAX	UNITS
VDD with respect to GND	25°C	GND - 0.3	-	6.0	V
ENABLE Input Voltage	25°C	GND - 0.3	-	Vdd+0.3	V
VEC ⁽¹⁾	25°C	3.0	-	4.15	V
VCHG ⁽¹⁾	25°C	3.0	-	4.15	V
RESET Output Voltage	25°C	GND - 0.3	-	2.7	V
INT/, CE, TEST, OSCI, OSCO, SDO, SDI, SCL, CLKOE, CLKOUT	See NXP PCF2123 Data Sheet				

⁽¹⁾ No external connections to these pins are allowed, except parallel EnerChips for extended backup time.


Integrated EnerChip Thin Film Battery Operating Characteristics


PARAMET	ſER	CONDITION	MIN	TYPICAL	MAX	UNITS
Solf Discharge (Evr. o	Self-Discharge (5 yr. average)		-	2.5	-	% per year
Sell-Discharge (5 yr. a	verage)	Recoverable	-	1.5(1)	-	% per year
Operating Temperatur	e	-	-30	25	+70	°C
Storage Temperature		-	-40	-	+125 (2)	°C
	0510		5000	-	-	cycles
Recharge Cycles (to 80% of rated	25°C	50% depth-of discharge	1000	-	-	cycles
(to 80% of rated	10.00	10% depth-of-discharge	2500	-	-	cycles
	capacity) 40°C		500	-	-	cycles
Recharge Time (to 80% of rated capacity; 4.1V charge; 25°C) ⁽³⁾		Charge cycle 2	-	11	22	minutoo
		Charge cycle 1000	-	45	70	minutes
Capacity (see Figure 5	5)	40nA discharge; 25°C	5	-	-	μAh

⁽¹⁾ First month recoverable self-discharge is 5% average.

⁽²⁾ Storage temperature is for uncharged EnerChip CC device.

⁽³⁾ EnerChip charging time increases approximately 2x per 10°C decrease in temperature.

Important Reference Documents

For complete specifications of the integrated PCF2123 Real-Time Clock, see here: http://www.cymbet.com/pdfs/NXP RTC PCF2123.pdf

For complete specifications of the Cymbet 5μ Ah EnerChip and integrated power management circuit, see here: http://www.cymbet.com/pdfs/DS-72-21.pdf.

The EnerChip and power management functions within the CBC34123 are configured using Mode 1 (VMODE = GND) described in the CBC3105 data sheet.

For guidelines regarding crystal selection and other important information pertaining to the PCF2123, see the UM10301 - User Manual for NXP Real Time Clocks, located here: http://www.nxp.com/documents/user_manual/UM10301.pdf

Functional Description of Integrated PCF2123 Real-Time Clock

The PCF2123 contains 16 8-bit registers with an auto-incrementing address counter, an on-chip 32.768 kHz oscillator with two integrated load capacitors, a frequency divider which provides the source clock for the Real Time Clock (RTC), a programmable clock output, and a 6.25 Mbit/s SPI-bus. An offset register allows fine tuning of the clock.

All 16 registers are designed as addressable 8-bit parallel registers although not all bits are implemented.

- The first two registers (memory address 00h and 01h) are used as control registers.
- The memory addresses 02h through 08h are used as counters for the clock function (seconds up to years). The registers Seconds, Minutes, Hours, Days, Weekdays, Months, and Years are all coded in Binary Coded Decimal (BCD) format. When one of the RTC registers is written or read the contents of all counters are frozen. Therefore, faulty writing or reading of the clock and calendar during a carry condition is prevented.
- Addresses 09h through 0Ch define the alarm condition.
- Address 0Dh defines the offset calibration.
- Address OEh defines the clock out and timer mode.
- Address registers 0Eh and 0Fh are used for the countdown timer function. The countdown timer has four selectable source clocks allowing for countdown periods in the range from 244 ms up to four hours. There are also two pre-defined timers which can be used to generate an interrupt once per second or once per minute. These are defined in register Control_2 (01h).

Low Power Operation

Minimum power operation will be achieved by reducing the number and frequency of switching signals inside the IC, i.e., low frequency timer clocks and a low frequency CLKOUT will result in lower operating power. A second prime consideration is the series resistance R₂ of the quartz used.

Power Consumption with Respect to Quartz Series Resistance

The series resistance acts as a loss element. Low R_s will reduce current consumption further.

Extending RTC Holdover Time Using an External EnerChip Battery

In some circumstances, the RTC power holdover time requirements may extend beyond 30 hours in the lowest power timer mode. Longer power backup time can be easily achieved by adding an external EnerChip to the VCHG pin. An external CBC012 on pin 6 will add 90 hours for a total of 120 hours of backup time, and an external CBC050 will add 360 hours for a total of 390 hours which almost 16 days of power holdover.

PCF2123 Register Overview

16 registers are available. The time registers are encoded in the Binary Coded Decimal (BCD) format to simplify application use. Other registers are either bit-wise or standard binary.

Bit positions labeled as '-' are not implemented and will return a '0' when read. The bit position labeled as '--' is not implemented and will return a '0' or '1' when read. Bit positions labeled with N should always be written with logic '0' ⁽¹⁾.

Address	Register name	Bit							
		7	6	5	4	3	2	1	0
Control a	nd status registers								
00h	Control_1	EXT_TEST	Ν	STOP	SR	Ν	12_24	CIE	Ν
01h	Control_2	МІ	SI	MSF	TI_TP	AF	TF	AIE	TIE
Time and	date registers								
02h	Seconds	OS	SECOND	S (0 to 59)					
03h	Minutes		MINUTES	S (0 to 59)					
04h	Hours	-	-	AMPM	HOURS ((1 to 12) i	n 12 h moo	le	
				HOURS (0 to 23) in 2	24 h mod	е		
05h	Days	-	-	DAYS (1	to 31)				
06h	Weekdays	-	-	-	-	-	WEEKD	AYS (0 to	6)
07h	Months	-	-	-	MONTHS	6 (1 to 12)		
08h	Years	YEARS (0 to	99)						
Alarm reg	isters								
09h	Minute_alarm	AE_M	MINUTE_	_ALARM (0	to 59)				
0Ah	Hour_alarm	AE_H	-	AMPM	HOUR_A	LARM (1	to 12) in 1	2 h mode	;
				HOUR_A	LARM (0 to	o 23) in 24	4 h mode		
0Bh	Day_alarm	AE_D	-	DAY_ALA	ARM (1 to 3	1)			
0Ch	Weekday_alarm	AE_W	-	-	-	-	WEEKD 6)	AY_ALAI	RM (0 to
Offset reg	ister								
0Dh	Offset_register	MODE	OFFSET	6:0]					
Timer reg	isters								
0Eh	Timer_clkout	-	COF[2:0]			TE	-	CTD[1	:0]
0Fh	Countdown_timer	COUNTDO	WN_TIMEF	R[7:0]		·			

[1] Except in the case of software reset, see Section 8.3.1.1.

POWER SUPPLY CURRENT CHARACTERISTICS OF INTEGRATED CBC910 POWER MANAGEMENT CIRCUIT ONLY

Ta = -20°C to +70°C

CHARACTERISTIC	SYMBOL	CONDITION		MIN	MAX	UNITS
Quiescent Current		ENABLE=GND	VDD=3.3V	-	3.5	μA
(CBC910 power management circuit	lq		VDD=5.5V	-	6.0	μA
only; VDD > VRESET ; RTC		ENABLE=VDD	VDD=3.3V	-	35	μA
current not included)			VDD=5.5V	-	38	μA
EnerChip Cutoff Current (IQBATON adds to RTC	IQBATOFF	Vbat < Vbatco, Vout=0		-	0.5	nA
current when in backup mode)	Iqbaton	VBAT > VBATCO, ENABLE=VDD, Id	оит=0	-	42	nA

INTERFACE LOGIC SIGNAL CHARACTERISTICS VDD = 2.5V to 5.5V, Ta = -20°C to +70°C

CHARACTERISTIC	SYMBOL	CONDITION	MIN	MAX	UNITS
High Level Input Voltage	Vih	-	Vdd - 0.5	-	Volts
Low Level Input Voltage	VIL	-	-	0.5	Volts
High Level Output Voltage	Vон	Vdd>Vtн (see Figures 4 and 5) IL=10µA	Vdd - 0.04V ⁽¹⁾	-	Volts
Low Level Output Voltage	Vol	IL = -100µA	-	0.3	Volts
Logic Input Leakage Current	lin	0 <vin<vdd< td=""><td>-1.0</td><td>+1.0</td><td>nA</td></vin<vdd<>	-1.0	+1.0	nA

(1) \overline{RESET} tracks VDD; $\overline{RESET} = VDD - (IOUT \times ROUT)$.

RESET SIGNAL AC/DC CHARACTERISTICS

VDD = 2.5V to 5.5V, Ta = -20°C to +70°C

CHARACTERISTIC	SYMBOL	CONDITION	MIN	MAX	UNITS
VDD Rising to RESET Rising	treseth	Vpd rising from 2.8V TO 3.1V in <10µs	60	200	ms
Vod Falling to RESET Falling	TRESETL	VDD falling from 3.1V to 2.8V in <100ns	0.5	2	μs
TRIP Voltage Vdd Rising	Vreset	VMODE=GND	2.85	3.15	V
RESET Hysteresis Voltage (Vpd to RESET)	Vhyst	Vmode=GND	45	75	mV

CBC34123 EnerChip™ RTC

CHARGE PUMP CHARACTERISTICS (PERTAINS TO INTEGRATED CBC910 POWER MANAGEMENT CIRCUIT) (NOTE: THIS TABLE PROVIDES IMPORTANT INFORMATION WHEN CONNECTING ADDITIONAL ENERCHIPS TO VCHG.)

CHARACTERISTIC	SYMBOL	CONDITION	MIN	MAX	UNITS
ENABLE=VDD to Charge Pump Active	tcpon	ENABLE to 3rd charge pump pulse, Vdd=3.3V	60	80	μs
ENABLE Falling to Charge Pump Inactive	tcpoff	-	0	1	μs
Charge Pump Frequency	fcp		-	120	KHz (1)
Charge Pump Resistance	Rcp	Delta Vbat, for Ibat charging current of 1µA to 100µA CFLY=0.1µF, CBAT=1.0µF	150	300	Ω
Vcнg Output Voltage	Vcp	CFLY=0.1μF, CBAT=1.0μF, Ιουτ=1μΑ, Temp=+25°C	4.065	4.150	V
Vсна Temp. Coefficient	Тсср	Ιουτ=1μΑ, Temp=+25°C	-2.0	-2.4	mV/°C
Charge Pump Current Drive	ICP	ΙβΑΤ=1mA Cfly=0.1μF, Cbat=1.0μF	1.0	-	mA
Charge Pump on Voltage	VENABLE	ENABLE=VDD	2.5	-	V

VDD = 2.5V to 5.5V, Ta = -20°C to +70°C

⁽¹⁾ $f_{CP} = 1/t_{CPPER}$

ADDITIONAL CHARACTERISTICS

Ta = -20°C to +70°C

CHARACTERISTIC	SYMBOL	CONDITION	LIM	ITS	UNITS
			MIN	MAX	
VBAT Cutoff Threshold	VBATCO	Ιουτ=1μΑ	2.75	3.25	V
Cutoff Temp. Coefficient	Тссо	-	+1	+2	mV/°C
VBAT Cutoff Delay Time	tcooff	VBAT from 40mV above to 20mV below VBATCO lout=1µA	18	-	ms

Note: All specifications contained within this document are subject to change without notice

Typical CBC34123 EnerChip RTC Connection to Microcontroller

Figure 5 illustrates how the CBC34123 is typically connected to a microcontroller (MCU) in a system. For simplicity, only the MCU lines routed to/from the CBC34123 are shown. The I/O line from the MCU to the EN pin of the CBC34123 is optional for reducing power consumption of the CBC34123. The EN pin can be forced low by the MCU when the integrated EnerChip does not need to be charged. If EN is not connected to the MCU or otherwise controlled externally, it must be tied to VDD to ensure the EnerChip is charged when VDD is valid.

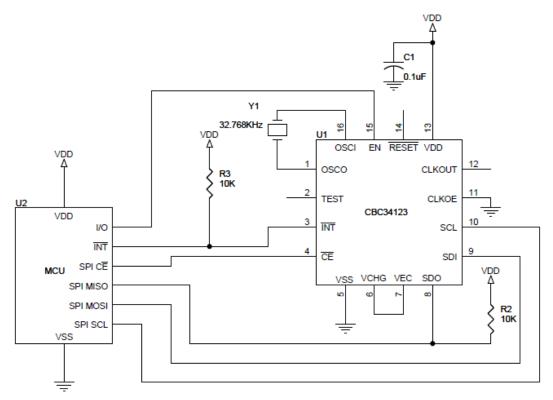


Figure 5: Typical Application Schematic Showing MCU Connections to CBC34123

Ordering Information

EnerChip CC Part Number	Description	Notes
CBC34123-M5C	EnerChip RTC in 5mm x 5mm x 1.4mm 16-QFN Land Grid Array	Shipped in Tube
CBC34123-M5C-TR1 CBC34123-M5C-TR5	EnerChip RTC in 5mm x 5mm x 1.4mm 16-QFN Land Grid Array	Tape-and-Reel - 1000 pcs (TR1) or 5000 pcs (TR5) per reel
CBC-EVAL-12	EnerChip RTC Evaluation Kit	USB based Eval Kit with CBC34123 tab board

U.S. Patent No. 8,144,508. Additional U.S. and Foreign Patents Pending

Disclaimer of Warranties; As Is

The information provided in this data sheet is provided "As Is" and Cymbet Corporation disclaims all representations or warranties of any kind, express or implied, relating to this data sheet and the Cymbet EnerChip product described herein, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, non-infringement, title, or any warranties arising out of course of dealing, course of performance, or usage of trade. Cymbet EnerChip products are not authorized for use in life critical applications. Users shall confirm suitability of the Cymbet EnerChip product in any products or applications in which the Cymbet EnerChip product is adopted for use and are solely responsible for all legal, regulatory, and safety-related requirements concerning their products and applications and any use of the Cymbet EnerChip product described herein in any such product or applications.

Cymbet, the Cymbet Logo, and EnerChip are Cymbet Corporation Trademarks