
Voltage Transducer LV 100-3000

For the electronic measurement of voltages: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit).

$V_{PN} = 3000 \text{ V}$

Electrical data

V _{PN} V _P	Primary nominal r.m.s. voltage Primary voltage, measuring range Primary nominal r.m.s. current		3000 0 ± 4500 3.33		V V mA
$oldsymbol{I}_{\scriptscriptstylePN} \ oldsymbol{R}_{\scriptscriptstyleM}$	Measuring resistance	Carrent	\mathbf{R}_{Mmin}	\mathbf{R}_{Mmax}	
	with ± 15 V	@ $\pm 3000 \text{ V}_{max}$ @ $\pm 4500 \text{ V}_{max}$	0 0	170 90	$\Omega \ \Omega$
I _{sn} K _n	Secondary nominal r.m.s. current Conversion ratio		50 3000 V	/ 50 m	mA A
V _C	Supply voltage (± 5 %) Current consumption R.m.s. voltage for AC is) solation test, 50 Hz, 1 mn	± 15 10 + I _s 9		V mA kV

Accuracy - Dynamic performance data

X _G	Overall Accuracy @ \mathbf{V}_{PN} , \mathbf{T}_{A} = 25°C Linearity		± 0.7 < 0.1		% %
I _о I _{от}	Offset current @ $\mathbf{I}_{\mathrm{p}} = 0$, $\mathbf{T}_{\mathrm{A}} = 25^{\circ}\mathrm{C}$ Thermal drift of \mathbf{I}_{O}	0°C + 70°C	Typ ± 0.2	Max ± 0.2 ± 0.3	mA mA
$\mathbf{t}_{_{\mathrm{r}}}$	Response time @ 90 % of $\mathbf{V}_{\scriptscriptstyle{\mathrm{PN}}}$		180		μs

General data

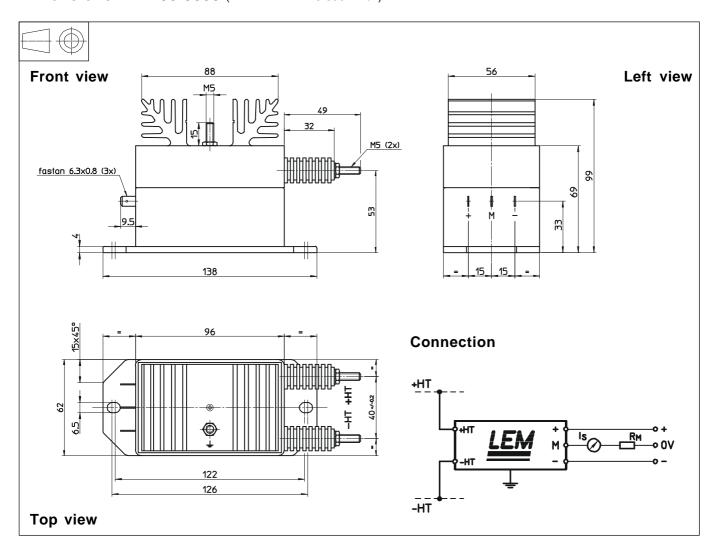
T_A	Ambient operating temperature	0 + 70	°C
T _s	Ambient storage temperature	- 25 + 85	°C
N	Turns ratio	30000 : 2000	
Р	Total primary power loss	10	W
$R_{_1}$	Primary resistance @ T _A = 25°C	900	$k\Omega$
R _s	Secondary coil resistance @ T _A = 70°C	60	Ω
m	Mass	850	g
	Standards	EN 50155	

Features

- Closed loop (compensated) voltage transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0
- Primary resistor R₁ incorporated into the housing.

Advantages

- Excellent accuracy
- Very good linearity
- Low thermal drift
- High immunity to external interference.


Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Uninterruptible Power Supplies (UPS)
- Power supplies for welding applications.

030528/3

Dimensions LV 100-3000 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Transducer fastening

Fastening torque max

- Connection of primary
- Connection of secondary
- Connection to the ground
- Fastening torque max
- ± 0.3 mm 2 holes Ø 6.5 mm M6 steel screws 5 Nm or 3.69 Lb - Ft. M5 threaded studs Faston 6.3 x 0.8 mm M5 threaded stud 2.2 Nm or 1.62 Lb. -Ft.

Remarks

- \bullet $\mathbf{I}_{_{\mathrm{S}}}$ is positive when $\mathbf{V}_{_{\mathrm{P}}}$ is applied on terminal +HT.
- The primary circuit of the transducer must be linked to the connections where the voltage has to be measured.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.