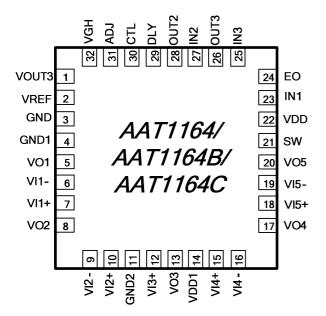


AAT1164/AAT1164B/AAT1164C


Product information presented is current as of publication date. Details are subject to change without notice.

TRIPLE-CHANNEL TFT LCD POWER SOLUTION WITH OPERATIONAL AMPLIFIERS

FEATURES

- Built in 3A, 0.2Ω Switching NMOS
- Positive LDO Driver Up to 28V/5mA
- Negative LDO Driver Down to -14V/5mA
- 1 V_{COM} and 4 V_{GAMMA} Operational Amplifiers
- 28V High Voltage Switch for VGH
- Internal Soft-Start Function
- 1.2MHz Fixed Switching Frequency
- 3 Channels Fault and Thermal Protection
- Low Dissipation Current
- QFN-32 Package Available

PIN CONFIGURATION

GENERAL DESCRIPTION

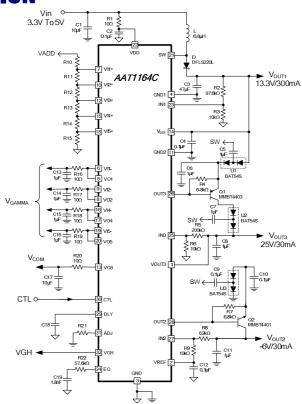
The AAT1164/AAT1164B/AAT1164C is a triple-channel TFT LCD power solution that provides a step-up PWM controller, two high voltage LDO drivers (one for positive voltage and one for negative voltage), five operational amplifiers, and one high voltage switch up to 28V for TFT LCD display.

The PWM controller consists of an on-chip voltage reference, oscillator, error amplifier, current sense circuit, comparator, under-voltage lockout protection and internal soft-start circuit. The thermal and power fault protection prevents internal circuit being damaged by excessive power.

The high voltage LDO drivers generate two regulated output voltage (V_{OUT2} and V_{OUT3}) set by external resistor dividers. VGH voltage does not activate until DLY voltage exceeds 1.25V.

The AAT1164/AAT1164B/AAT1164C contains 4+1 operational amplifiers. VO1, VO2, VO4, and VO5 are for gamma corrections and VO3 is for V_{COM} . In the short circuit condition, operational amplifiers are capable of sourcing $\pm 100 \text{mA}$ current for V_{GAMMA} , and $\pm 200 \text{mA}$ current for V_{COM} .

With the minimal external components, the AAT1164/AAT1164B/AAT1164C offers a simple and economical solution for TFT LCD power.



ORDERING INFORMATION

DEVICE TYPE	PART NUMBER	PACKAGE	PACKING	TEMP. RANGE	MARKING	MARKING DESCRIPTION
AAT1164	AAT1164-Q5-T	Q5:VQFN 32-5*5	T: Tape and Reel	–40 °C to +85 °C	AAT1164 XXXXX XXXX	1. Part Name 2. Lot No. (6~9 Digits) 3. Date Code (4 Digits)
AAT1164B	AAT1164B-Q5-T	Q5:VQFN 32-5*5	T: Tape and Reel	–40 °C to +85 °C	AAT1164B XXXXX XXXX	1. Part Name 2. Lot No. (6~9 Digits) 3. Date Code (4 Digits)
AAT1164C	AAT1164C-Q5-T	Q5:VQFN 32-5*5	T: Tape and Reel	–40 °C to +85 °C	AAT1164C XXXXX XXXX	1. Part Name 2. Lot No. (6~9 Digits) 3. Date Code (4 Digits)

NOTE: All AAT products are lead free and halogen free.

TYPICAL APPLICATION

- 台灣類比科技股份有限公司 -

Advanced Analog Technology, Inc. –

Version 1.00

Page 2 of 24

April 2007

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	VALUE	UNIT
VDD to GND	V_{DD}	7	V
VDD1, SW to GND (for AAT1164/AAT1164B)	V _{H1}	13.5	V
VDD1, SW to GND (for AAT1164C)	V _{H1}	14.5	V
VOUT3, OUT3, VGH to GND	V_{H2}	30	V
OUT2 to GND	V _{H3}	-14	V
Input Voltage 1 (IN1, IN2, IN3, DLY, CTL,)	V _{I1}	V _{DD} +0.3	V
Input Voltage 2 (VI1+, VI1-, VI2+, VI2-, VI3+, VI3-, VI4+, VI4-, VI5+, VI5-)	V _{I2}	V _{H1} +0.3	V
Output Voltage 1 (EO, V _{REF})	V _{O1}	V _{DD} +0.3	V
Output Voltage 2 (ADJ, VO1, VO2, VO3, VO4, VO5)	V _{O2}	V _{H1} +0.3	V
Operating Free-Air Temperature Range	T _C	–40 °C to +85 °C	°C
Storage Temperature Range	T _{STORAGE}	–45 °C to +125 °C	°C
Power Dissipation	P_d	1,600	mW

Note: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended period of time may affect device reliability.

AAT1164/AAT1164B/AAT1164C

ELECTRICAL CHARACTERISTICS

 $(V_{DD}=2.6V \text{ to } 5.5V, T_C=-40\,^{\circ}\text{C to } 85\,^{\circ}\text{C}$, unless otherwise specified. Typical values are tested at 25 $^{\circ}\text{C}$ ambient temperature, $V_{DD}=3.3V, V_{DD1}=10V.)$

PARAMETER	SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNIT
VDD Input Voltage Range	V_{DD}		2.6		5.5	٧
VDD1 Input Voltage Range	V_{DD1}	AAT1164/AAT1164B	8		13	V
VDD1 input voltage hange	V DD1	AAT1164C	8		14	V
VDD Under Voltage Lockout	V	Falling	2.1	2.2	2.3	V
	V_{UVLO}	Rising	2.3	2.4	2.5	V
VDD Operating Current	1	V _{IN1} = 1.5V, Not Switching		0.56	0.80	mA
VDD Operating Current	I_{VDD}	V _{IN1} = 1.0V, Switching		5.6	10.0	mA
VDD1 Operating Current	I _{VDD1}	$V_{V11+} \sim V_{V15+} = 4V$		7	10	mA
Thermal Shutdown	T _{SHDN}			160		°C

Reference Voltage

<u>,</u>						
PARAMETER	SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNIT
Reference Voltage	V_{REF}	$I_{V_{REF}} = 100 \mu A$	1.231	1.250	1.269	V
Line Regulation		$I_{V_{REF}} = 100 \mu A,$ $V_{DD} = 2.6 V \sim 5.5 V$	-	2	5	%/mV
Load Regulation		I _{VREF} = 0~100μA	-	1	5	%/mA

Oscillator

PARAMETER	SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNIT
Oscillation Frequency	f _{OSC}		1.05	1.20	1.35	MHz
Maximum Duty Cycle	D_{MAX}		84	87	90	%

AAT1164/AAT1164B/AAT1164C

ELECTRICAL CHARACTERISTICS

 $(V_{DD}=2.6V \text{ to } 5.5V, T_C=-40\,^{\circ}\text{C to } 85\,^{\circ}\text{C}$, unless otherwise specified. Typical values are tested at 25 $^{\circ}\text{C}$ ambient temperature, $V_{DD}=3.3V, V_{DD1}=10V.)$

Soft Start & Fault Detect

PARAMETER	SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNIT
Channel 1 Soft Start Time	t _{SS1}			14		ms
Channel 2 Soft Start Time	t _{SS2}			14		ms
Channel 3 Soft Start Time	t _{SS3}			14		ms
During Fault Protect Trigger Time	t _{FP}			55		ms
IN1 Fault Protection Voltage	V_{F1}		1.00	1.05	1.10	٧
IN2 Fault Protection Voltage	V_{F2}		0.40	0.45	0.50	٧
IN3 Fault Protection Voltage	V _{F3}		1.00	1.05	1.10	٧

Error Amplifier (Channel 1)

PARAMETER	SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNIT			
Feedback Voltage	V_{IN1}		1.221	1.233	1.245	V			
Input Bias Current	I _{B1}	V _{IN1} = 1V to1.5V	-40	0	40	nA			
Feedback-Voltage Line Regulation		Level to Produce $V_{EO} = 1.233V$ $2.6V < V_{DD} < 5.5V$		0.05	0.15	%/mV			
Transconductance	G _m	$\Delta I = 5 \mu A$		105		μS			
Voltage Gain	A _V			1,500		V/V			

N-MOS Switch (Channel 1)

PARAMETER	SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNIT
Current Limit	I _{LIM}			3.0		Α
On-Resistance	R _{ON}	I _{SW} = 1.0A		0.2		Ω
Leakage Current	I _{SWOFF}	V _{SW} = 12V		0.01	20.00	μA

AAT1164/AAT1164B/AAT1164C

ELECTRICAL CHARACTERISTICS

 $(V_{DD}=2.6V \text{ to } 5.5V, T_C=-40\,^{\circ}\text{C to } 85\,^{\circ}\text{C}$, unless otherwise specified. Typical values are tested at 25 $^{\circ}\text{C}$ ambient temperature, $V_{DD}=3.3V, V_{DD1}=10V.)$

Negative Charge Pump (Channel 2)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
IN2 Threshold Voltage	V_{IN2}	$I_{OUT2} = -100 \mu\text{A}$	235	250	265	mV
IN2 Input Bias Current	I _{B2}	$V_{IN2} = -0.25V$ to 0.25V	-40	0	40	nA
OUT2 Leakage Current	I _{OFF2}	V _{IN2} = 0V, OUT2 = -12V		-20	-50	μΑ
OUT2 Source Current	I _{OUT2}	V _{IN2} = 0.35V, OUT2 = -10V	1	4		mA

Positive Charge Pump (Channel 3)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
IN3 Threshold Voltage	V_{IN3}	I _{OUT3} = 100 μA	1.22	1.25	1.28	٧
IN3 Input Bias Current	I _{B3}	V _{IN3} = 1V to 1.5V	-40	0	40	nA
OUT3 Leakage Current	I _{OFF3}	V _{IN3} = 1.4V, OUT3 = 28V		40	80	μΑ
OUT3 Sink Current	I _{OUT3}	V _{IN3} = 1.1V, OUT3 = 25V	1	4		mA

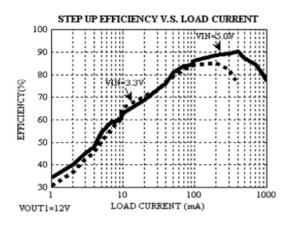
High Voltage Switch Controller

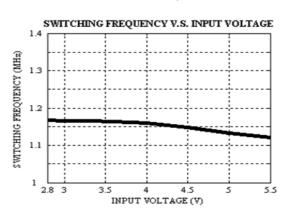
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
DLY Source Current	I _{DLY}		-4	-5	-6	μΑ
DLY Threshold Voltage	V_{DLY}		1.22	1.25	1.28	V
DLY Discharge R _{ON}	R _{DLY}			8		Ω
CTL Input Low Voltage	V _{IL}				0.5	V
CTL Input High Voltage	V _{IH}		2			V
CTL Input Bias Current	I _{B4}	$V_{CTL} = 0$ to V_{DD}	-40	0	40	nA
Propagation Delay CTL to VGH	t _{PP}	OUT3 = 25V		100		ns
VOUT3 to VGH Switch R-on	R _{ONSC}	$V_{DLY} = 1.5V, V_{CTL} = V_{DD}$		15	30	Ω
ADJ to VGH Switch R-on	R _{ONDC}	$V_{DLY} = 1.5V, V_{CTL} = GND$		30	60	Ω
VGH to GND1 Switch R-on	R _{ONCG}	$V_{DLY} = 1V$	1.5	2.5	3.5	kΩ

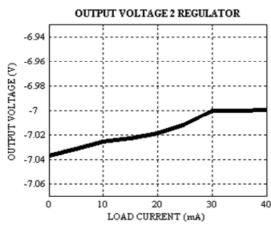
AAT1164/AAT1164B/AAT1164C

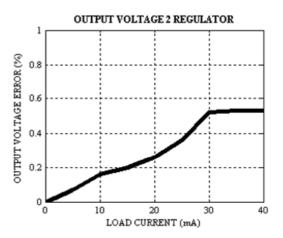
ELECTRICAL CHARACTERISTICS

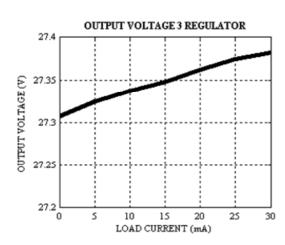
 $(V_{DD}=2.6V \text{ to } 5.5V, T_C=-40\,^{\circ}\text{C} \text{ to } 85\,^{\circ}\text{C}$, unless otherwise specified. Typical values are tested at 25 $^{\circ}\text{C}$ ambient temperature, $V_{DD}=3.3V, V_{DD1}=10V.)$

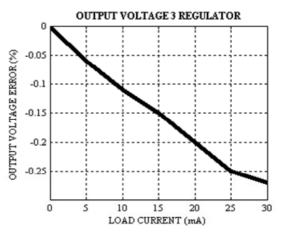

V_{COM} and V_{GAMMA} Buffer

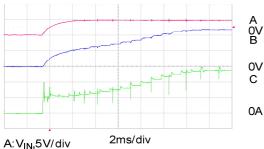

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Input Offset Voltage	V _{OS}	$V_{VI1+} \sim V_{VI5+} = 4V$	-	2	12	mV
Input Bias Current	I _{B5}	$V_{VI1+} \sim V_{VI5+} = 4V$	-40	0	40	nA
Output Swing	V_{OL}		-	-	V _{VI−} +0.15	
		I _{VO3} = 50mA, V _{VI3} = 4V	-	4.03	4.06	V
	V _{OH}	$ \begin{aligned} &I_{VO1},I_{VO2},I_{VO4},I_{VO5} = \\ &-50\text{mA},\\ &V_{VI1},V_{VI2},V_{VI4},V_{VI5} = 0V,\\ &4V,10V \end{aligned} $	V _{VI-} -0.15		-	
		$I_{VO3} = -50 \text{mA}, \ V_{VI3} = 4 \text{V}$	3.94	3.97	-	
Chart Civarit Commant		I _{VO1} , I _{VO2} , I _{VO4} , I _{VO5}	-	±100	-	mA
Short Circuit Current	I _{SHORT}	I _{VO3}	-	±200	-	mA
Slew Rate	SR	$V_{VI1+}, V_{VI3+} = 2V \text{ to } 8V,$ $V_{VI3+} \sim V_{VI5+} = 8V \text{ to } 2V,$ 20% to 80%	-	12	-	V/µs
Settling Time	t _S	$V_{VI1+} \sim V_{VI5+} = 3.5V \text{ to } 4.5V,$ 90%	-	5		μs



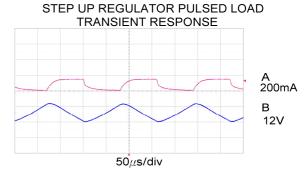

TYPICAL OPERATING CHARACTERISTICS


(V_{IN} = 5V, V_{OUT1} = 12V, V_{OUT2} = -7V, V_{OUT3} = 27V, T_C = +25 $^{\circ}C$, unless otherwise noted.)

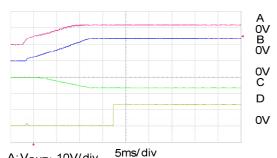




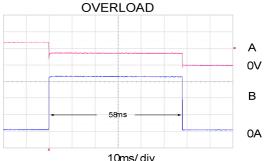
AAT1164/AAT1164B/AAT1164C


TYPICAL OPERATING CHARACTERISTICS (CONT.)

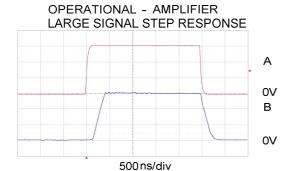
 $(V_{IN} = 5V, V_{OUT1} = 12V, V_{OUT2} = -7V, V_{OUT3} = 27V, T_C = +25$ °C, unless otherwise noted.)



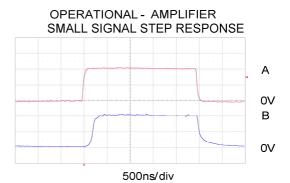
B: V_{OUT1}, 5V/div C: INDUCTOR CURRENT, 1A/div


A: LOAD CURRENT,100mA/div B: V_{OUT1}, 200mV/div, AC-COUPLED

POWER ON SEQUENCE



A: V_{OUT1}, 10V/div B: V_{OUT3}, 20V/div C: V_{OUT2}, 10V/div D: V_{O3}, 20V/div


TIME DELAY LATCH RESPONSE TO

A: V_{OUT1},5 V/ div B: INDUCTOR CURRENT,1A/ div

A: INPUT SIGNAL,2V/div B: OUTPUT SINAL,2V/div V_{SUP}= 6V

A: INPUT SIGNAL, 200 mV/div B: OUTPUT SINAL, 200 mV/div

Advanced Analog Technology, Inc. –

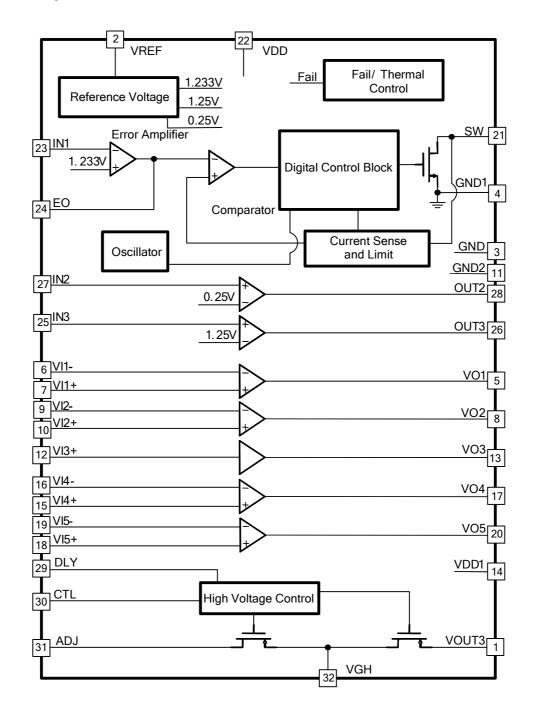
⁻ 台灣類比科技股份有限公司 -

AAT1164/AAT1164B/AAT1164C

PIN DESCRIPTION

PIN NO.	NAME	I/O	DESCRIPTION	
QFN-32				
1	VOUT3	-	Channel 3 Output Voltage (gate high voltage input)	
2	VERF	0	Internal Reference Voltage Output	
3	GND	-	Ground	
4	GND1	-	SW MOS Ground	
5	VO1	0	Operational Amplifier 1 Output	
6	VI1–	I	Operational Amplifier 1 Negative Input	
7	VI1+	I	Operational Amplifier 1 Positive Input	
8	VO2	0	Operational Amplifier 2 Output	
9	VI2-	I	Operational Amplifier 2 Negative Input	
10	VI2+	I	Operational Amplifier 2 Positive Input	
11	GND2	-	Ground for Operational Amplifiers	
12	VI3+	I	V _{COM} Operational Amplifier Positive Input	
13	VO3	I	V _{COM} Operational Amplifier Output	
14	VDD1	-	High Voltage Power Supply Input	
15	VI4+	I	Operational Amplifier 4 Positive Input	
16	VI4–	I	Operational Amplifier 4 Negative Input	
17	VO4	0	Operational Amplifier 4 Output	
18	VI5+	I	Operational Amplifier 5 Positive Input	
19	VI5-	I	Operational Amplifier 5 Negative Input	
20	VO5	0	Operational Amplifier 5 Output	
21	SW	-	Main PWM Switching Pin	
22	VDD	-	Power Supply Input	
23	IN1	I	Main PWM Feedback Pin	
24	EO	0	Main PWM Error Amplifier Output	
25	IN3	I	Positive Charge Pump Feedback Pin	

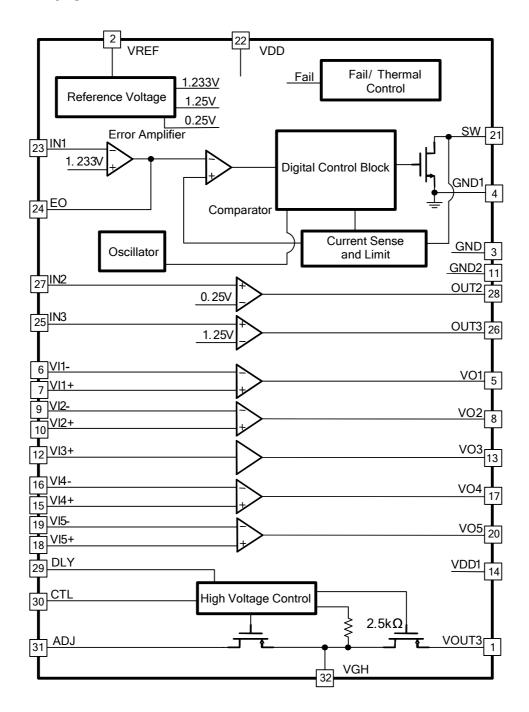
April 2007


AAT1164/AAT1164B/AAT1164C

PIN NO. QFN-32	NAME	I/O	DESCRIPTION	
26	OUT3	0	Positive Charge Pump Output	
27	IN2	I	Negative Charge Pump Feedback Pin	
28	OUT2	0	Negative Charge Pump Output	
29	DLY	I	High Voltage Switch Delay Control	
30	CTL	I	High Voltage Switch Control Pin	
31	ADJ	0	Gate High Voltage Fall Time Setting Pin	
32	VGH	0	Switching Gate High Voltage for TFT	

FUNCTION BLOCK DIAGRAM

AAT1164/AAT1164B


⁻ 台灣類比科技股份有限公司 -

Advanced Analog Technology, Inc. –

FUNCTION BLOCK DIAGRAM

AAT1164/AAT1164C

⁻ 台灣類比科技股份有限公司 -

Advanced Analog Technology, Inc. –

TYPICAL APPLICATION CIRCUIT

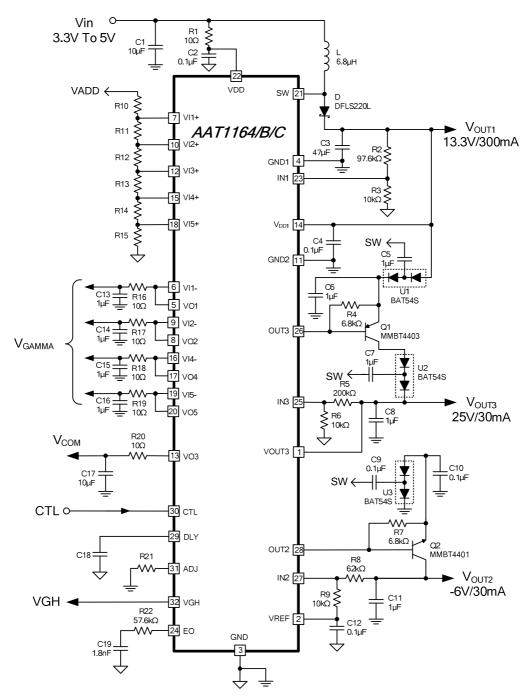


Figure 1. Application Circuit

Advanced Analog Technology, Inc. –

Version 1.00

Page 14 of 24

⁻ 台灣類比科技股份有限公司 -

AAT1164/AAT1164B/AAT1164C

DESIGN PROCEDURE

Boost Converter Design Setting the Output Voltage and Selecting the Lead Compensation Capacitor

The output voltage of boost converter is set by the resistor divider from the output (V_{OUT1}) to GND with the center tap connected to IN1, where V_{IN1}, the boost converter feedback regulation voltage is 1.233V, Choose R_2 (Figure 2) between $5.1k\Omega$ to $51k\Omega$ and calculate R₁ to satisfy the following equation.

$$R_1 = R_2 \left(\frac{V_{OUT1}}{V_{IN1}} - 1 \right)$$

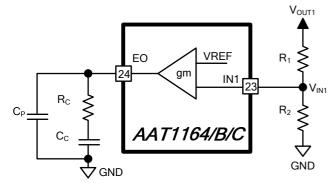


Figure 2. Feedback Circuit

Inductor Selection

The minimum inductance value is selected to make sure that the system operates in continuous conduction mode (CCM) for high efficiency and to prevent EMI. The equation of inductor uses a parameter k, which is the ratio of the inductor peak to peak ripple current to the input DC current. The best trade-off between voltage ripple of transient output current and permanent output current has a k between 0.4 and 0.5.

$$L \geq \frac{\eta V_O}{k I_O f_S} D (1-D)^2 \,,$$

$$D = 1 - \frac{V_{IN}}{V_{O}}$$

$$k = \frac{\Delta I_{Lpeak-peak}}{I_{IN}}$$

η: Boost converter efficiency

k: The ratio of the inductor peak to peak ripple current to the input DC current

V_{IN}: Input voltage

Vo: Output voltage

Io: Output load current

fs: Switching frequency

D: Duty cycle

ΔI_{Lpeak-peak}: Inductor peak to peak ripple current

I_{IN}: Input DC current

The AAT1164 SW current limit (I_{LIM}) and inductor's saturation current rating (I_{LSAT}) should exceed I_{L(peak)}, and the inductor's DC current rating should exceed I_{IN}. For the best efficiency, choose an inductor with less DC series resistance (r1).

$$I_{LIM}$$
 and $I_{LSAT} > I_{L(peak)}$

$$I_{LDC} > I_{IN}$$

$$\begin{split} &I_{LDC} > I_{IN} \\ &I_{L(peak)} = I_{IN} + \frac{V_{IN}D}{2Lf_S} \,, \end{split}$$

$$I_{IN} = \frac{I_O}{\eta(1-D)} ,$$

$$P_{DCR} \approx \left(\frac{I_O}{\eta(1-D)}\right)^2 r_L$$

I_{LDC}: DC current rating of inductor

P_{DCR}: Power loss of inductor series resistance

Table 1. Inductor Data List

C6-K1.8L	rL	DC CURRENT RATING		
3.9µH	41mΩ	2.5A		
6.8µH	68mΩ	2.2A		
10µH	81mΩ	1.8A		
MITSUMI Product-Max Height:1.9mm				

AAT1164/AAT1164B/AAT1164C

Example 1: In the typical application circuit (Figure 1) the output load current is 300mA with 13.3V output voltage and input voltage of 5V. Choose a k of 0.431 and efficiency of 90%.

$$\begin{split} L & \geq \frac{0.9 * 13.3}{0.431 * 0.3 * 1.2^6} \, 0.624 (0.376)^2 \approx 6.8 \, \mu H \\ I_{IN} & = \frac{I_O}{\eta (1-D)} = 0.886 A \\ I_{L(peak)} & = I_{IN} + \frac{V_{IN}D}{2Lf_S} = 1.0778 A \end{split}$$

 $P_{DCR} = 0.0534W$ or 1.34% power loss

Schottky Diode Selection

Schottky has to be able to dissipate power. The dissipated power is the forward voltage and input DC current. To achieve the best efficiency, choose a Schottky diode with less recovery capacitor (C_T) for fast recovery time and low forward voltage (V_F) .

For boost converter, the reverse voltage rating (V_{R}) should be higher than the maximum output voltage, and current rating should exceed the input DC current.

$$\begin{split} P_{\text{DIODE}} &= P_{\text{DSW}} + P_{\text{DCOM}} \\ P_{\text{DSW}} &= (1 - D) \ V_F Q_R f_S \\ Q_R &= V_R C_T Q_R \\ P_{\text{DCOM}} &= V_F I_O \ (1 - D) \end{split}$$

P_{DIODE}: Total power loss of diode for boost converter P_{DSW}: Switching loss of diode for boost converter P_{DCOM}: Conduction loss of diode for boost converter

Table 2. Schottky Data List

rabio 21 conotiny bata 21ct					
SMA	V_{F}	V_{R}	C_T		
B220A	0.24V	14V	150pF		
B240A	0.24V	28V	150pF		
DIODES Product-Max Height: 2.3mm					

For example,

 $P_{DIODE} = P_{DSW} + P_{DCOM} = 0.0273W$ or 0.68% power loss.

Input Capacitor Selection

The input capacitors have two important functions in PWM controller. First, an input capacitor provides the power for soft start procedure and supply the current for the gate-driving circuit. A 10 μF ceramic capacitor is used in typical circuit. Second, an input bypass capacitor reduces the current peaks, the input voltage drop, and noise injection into the IC. A low ESR ceramics capacitor 0.1 μF is used in typical circuit. To ensure the low noise supply at $V_{DD},\,V_{DD}$ is decoupled from input capacitor using an RC low pass filter.

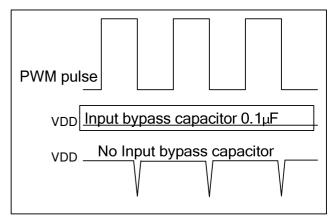


Figure 3. Input Bypass Capacitor Affects the V_{DD} Drop.

Output Capacitor

The output capacitor maintains the DC output voltage. A Low ESR ($r_{\rm C}$) ceramic capacitor can reduce the output ripple and power loss. There are two parameters which can affect the output voltage ripple: 1. the voltage drops when the inductor current flows through the ESR of output capacitor; 2. charging and discharging of the output capacitor also affect the output voltage ripple.

 $V_{RIPPLE} = V_{RIPPLE}(C_{OUT}) + V_{RIPPLE}(ESR)$

Advanced Analog Technology, Inc. –

AAT1164/AAT1164B/AAT1164C

$$V_{RIPPLE}(C_{OUT}) \approx \frac{I_{O}D}{f_{S}C_{OUT}}$$

 $V_{RIPPLE}(ESR) \approx I_{L(peak)} r_{C}$

$$I_{C(rms)} = \frac{V_{O}}{R_{L}} \sqrt{\frac{D}{1-D} + \frac{D}{12} [\frac{(1-D)R_{L}}{Lf_{S}}]^{2}}$$

$$P_{ESR} = (I_{C(rms)})^2 r_{C}$$

ESR: Equivalent Series Resistance

Example 2: $C_{OUT} = 38\mu F$, $r_C = 20 \text{ m}\Omega$

 $V_{RIPPLE}(C_{OUT}) = 4.1 \text{mV}$

 $V_{RIPPIF}(ESR) = 21.5 \text{mV}$

 $V_{RIPPLE} = 25.6 \text{mV}$

 $I_{C(rms)} = 0.411A$

 $P_{ESR} = 0.00338W$ or 0.08% power loss

Figure 4. Closed-Current Loop for Boost with PCM

Boost Converter Power loss

The largest portions of power loss in the boost converter are the internal power MOSFET, the inductor, the Schottky diode, and the output capacitor. If the boost converter has 90% efficiency, there is approximately 7.89% power loss in the internal MOSFET, 1.34% power loss in the inductor, 0.68% power loss in the Schottky diode, and 0.08% power loss in the output capacitor.

Vg Vg Nosfet CLK Rsii Vc Tc Ve SVc Vr Vr Vr Vr

Figure 5. Block Diagram of Boost Converter with Peak Current Mode (PCM)

Loop Compensation Design

The voltage-loop gain with current loop closed sets the stability of steady state response and dynamic performance of transient response. The loop compensation design is as follows:

Power Stage Transfer Functions

The duty to output voltage transfer function T_p is:

$$T_{p}(s) = \frac{V_{O}}{d} = T_{p0} \frac{(s + \omega_{esr})(s - \omega_{z2})}{s^{2} + 2\xi\omega_{n}s + \omega_{n}^{2}}$$

Where
$$T_{p0} = V_O \, \frac{-r_C}{\left(1-D\right)\left(R_L + r_C\right)}$$
 , $\omega_{esr} = \frac{1}{C_{OUT}r_C}$

And

$$\omega_{z2} = \frac{R_L \left(1-D\right)^2 - r}{L} \,, \\ \omega_n = \sqrt{\frac{\left(1-D\right)^2 R_L + r}{L C_{OUT} \left(R_L + r_C\right)}} \label{eq:omega_z2}$$

AAT1164/AAT1164B/AAT1164C

$$\xi = \frac{C_{OUT}[r(R_L + r_C) + R_L r_C (1 - D)^2] + L}{2\sqrt{LC_{OUT}(R_L + r_C)[r + (1 - D)^2 R_L]}},$$

$$r = r_L + Dr_{DS} + (1 - D)R_F$$

 r_{L} is the inductor equivalent series resistance, r_{C} is capacitor ESR, R_{L} is the converter load resistance, C_{OUT} is the output filter capacitor, r_{DS} is the transistor turn on resistance, and R_{F} is the diode forward resistance.

The duty to inductor current transfer function T_{pi} is:

$$T_{pi}(s) = \frac{i_{l}}{d} = T_{pi0} \frac{s + \omega_{zi}}{s^{2} + 2\xi\omega_{n}s + \omega_{n}^{2}}$$

Where
$$T_{pi0} = \frac{V_{O}(R_{L} + 2r_{C})}{L(R_{L} + r_{C})}$$
, $\omega_{zi} = \frac{1}{C_{OUT}(R_{L} / 2 + r_{C})}$

Current Sampling Transfer Function

Error voltage to duty transfer function $F_m(s)$ is:

$$F_{m}(s) = \frac{d}{V_{ei}} = \frac{2f_{S}^{2} \left(s^{2} + 2\xi \omega_{n} s + {\omega_{n}}^{2}\right)}{T_{pi0} R_{CS} s \left(s + {\omega_{zi}}\right) \left(s + {\omega_{sh}}\right)}$$

Where
$$\omega_{sh} = \frac{3\omega_s}{\pi} \left(\frac{1-\alpha}{1+\alpha}\right)$$
, $\alpha = \frac{M_2-M_a}{M_1+M_a}$,

$$\omega_s = 2\pi f_S$$

Therefore, $F_m(s)$ depends on duty to inductor current transfer function $T_{pi}(s)$, and f_S is the clock switching frequency; R_{CS} is the current-sense amplifier transresistance.

For the boost converter $M_1 = V_{IN} / L$ and $M_2 = (V_O - V_{IN}) / L$.

For AAT1164, $R_{CS} = 0.24$ V/A, Ma is slope compensation, Ma = 0.8×10^{6} .

The closed-current loop transfer function $T_{pi}(s)$ is:

$$T_{icl}(s) = \frac{{12{f_S}^2 }}{{R_{CS}}{T_{pi0}}} \times \frac{{{\left({{s^2} + 2\xi {\omega _n}s + {\omega _n}^2} \right)}}}{{{\left({s + {\omega _{zi}}} \right)}{{\left({s^2} + {\omega _{sh}}s + 12{f_S}^2} \right)}}}$$

The Voltage-Loop Gain with Current Loop Closed

The control to output voltage transfer function T_d is:

$$T_{d}(s) = \frac{V_{O}(s)}{V_{C}(s)} = T_{icl}(s)T_{p}(s)$$

The voltage-loop gain with current loop closed is:

$$L_{VI}(s) = \beta T_{C}(s) T_{d}(s)$$

$$= \beta g_m R_C \frac{s + \omega_c}{s} \frac{12 f_S^2 T_{p0}}{R_{CS} T_{pi0}} \times$$

$$\frac{(s+\omega_{z1})(s-\omega_{z2})}{(s+\omega_{zi})(s^2+s\omega_{sh}+12f_S^2)}$$

Where
$$\beta = \frac{V_{FB}}{V_{O}}$$

The compensator transfer function

$$T_C(s) = \frac{V_C}{V_{fb}} = g_m R_C \, \frac{s + \omega_c}{s} \; , \label{eq:TC}$$

Vhere

$$\omega_C = \frac{1}{R_C C_C}$$

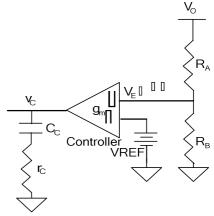


Figure 6. Voltage Loop Compensator

AAT1164/AAT1164B/AAT1164C

Compensator design guide:

- 1. Crossover frequency $f_{ci} < \frac{1}{2}f_S$
- 2. Gain margin>10dB
- 3. Phase margin>45°
- 4. The $|L_{VI}(s)| = 1$ at crossover frequency, Therefore, the compensator resistance, R_C is determined by:

$$R_C = \frac{V_O}{V_{FB}} \frac{2\pi f_{ci} C_{OUT} R_{CS}}{g_m k} \frac{\left(R_L + 2r_C\right)}{\left[\left(1 - D\right) R_L - \frac{r}{\left(1 - D\right)}\right]} \label{eq:RC}$$

Table 3. k Factor Table

10.010 01.111.0001			
Соит	Best Corner	k Factor	
Cout	Frequency	K i dotoi	
21.533μF	23.740kHz	4.692	
25.079μF	21.842kHz	5.083	
32.587μF	20.095kHz	6.042	
36.312μF	15.649kHz	5.230	
38.469μF	13.247kHz	4.703	

5. The output filter capacitor is chosen so $C_{\mbox{OUT}}R_{\mbox{\scriptsize L}}$ pole cancels $R_{\mbox{\scriptsize C}}C_{\mbox{\scriptsize C}}$ zero

$$\begin{split} \epsilon R_C C_C &= C_{OUT} \Bigg(\frac{R_L}{2} + r_C \Bigg), \text{ and} \\ C_C &= \frac{C_{OUT}}{\epsilon R_C} \Bigg(\frac{R_L}{2} + r_C \Bigg) \\ \epsilon &= (1 \sim 3) \end{split}$$

Example 3:

$$\begin{split} &V_{IN}=5V,\ V_O=13.3V,\ I_O=300mA,\ f_S=1,190kHz,\\ &V_{FB}=1.233V,\ L=6.65\mu H,\ g_m=85\mu S,\\ &r_L=76.689\,m\Omega\\ &r_C=9.13\,m\Omega,\ R_F=0.7667\,\Omega\,,C_C=1.95nF,\\ &R_C=7.6\,k\Omega\,,\ C_{OUT}=38.5\,\mu\,F\,,\epsilon=3,\ R_{CS}=0.23V/A. \end{split}$$

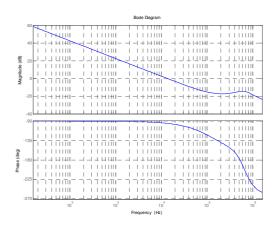


Figure 7. Bode Plot of Loop Gain Using Matlab® Simulation

Positive and Negative LDO Driver Output Voltage Selection

The output voltage of positive LDO driver is set by a resistive divider from the output (V_{OUT3}) to GND with the center tap connected to the IN3, where V_{IN3} , the positive LDO driver feedback regulation voltage, is 1.25V. Choose R_6 (Figure 8) between $10k\Omega$ and $51k\Omega$. And calculate R_5 with the following equation.

$$R_5 = R_6 \left(\frac{V_{\text{OUT3}}}{V_{\text{IN3}}} - 1 \right)$$

The output voltage of negative LDO driver is set by a resistive divider from the output (V_{OUT2}) to VREF with the center tap connected to IN2, where V_{IN2} , the negative LDO driver feedback regulation voltage, is 0.25V. Choose R₉ (Figure 9) between 10k Ω and 51k Ω and calculate R₈ with the following equation.

$$R_8 = R_9 \left(\frac{V_{IN2} - V_{OUT2}}{V_{REF} - V_{IN2}} \right)$$

AAT1164/AAT1164B/AAT1164C

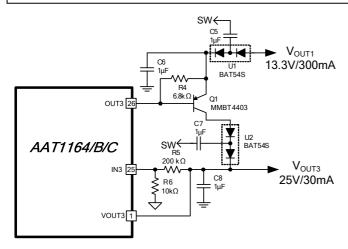


Figure 8. The Positive LDO Driver

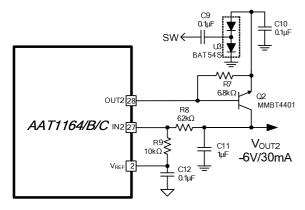


Figure 9. The Negative LDO Driver

Example 4:

For system design

$$\begin{split} V_{OUT3} &= 25 V, \ R_5 = 200 k \Omega, \ R_6 = 10 k \Omega, \\ V_{OUT2} &= -6 V, \ R_8 = 62 k \Omega, \ R_9 = 10 k \Omega \end{split}$$

Flying Capacitors

Increasing the flying capacitor (C_5 , C_7 , C_9) values can lower output voltage ripples. The $1\mu F$ ceramic capacitors works well in positive LDO driver. A $0.1\mu F$ ceramic capacitor works well in negative LDO driver.

LDO Driver Diode

To achieve high efficiency, a Schottky diode should be

used. BAT54S (Figure 8 and 9) has fast recovery time and low forward voltage for best efficiency.

LDO Driver Base-Emitter Resistors

For AAT1164, the minimum drive current for positive and negative LDO drivers are 1mA, thus the minimum base-emitter resistance can be calculated by the following equation:

$$\begin{aligned} R_{4(min)} &\geq V_{BE(max)} / ((I_{OUT3(min)} - I_{C}) / h_{fe(min)}) \\ R_{7(min)} &\geq V_{BE(max)} / ((I_{OUT2(min)} - I_{C}) / h_{fe(min)}) \end{aligned}$$

Table 4. Pass Transistor Specifications

	MMBT4401	MMBT4403	
V _{BE(max)}	0.65V	0.5V	
h _{fe(min)}	h _{fe(min)} 130 90		
DIODES Product, Package: SOT23			

Example 5:

Output current of V_{OUT3} and V_{OUT2} are 30mA, the minimum base-emitter resistor can be calculated as

$$R_{4(min)} \ge 0.5 / ((|1mA - 30mA|) / 90) \ge 750 \Omega$$

 $R_{7(min)} \ge 0.65 / ((|1mA - 30mA|) / 130) \ge 845 \Omega$

The minimum value can be used, however, the larger value has the advantage of reducing quiescent current. So we choose $6.8k\Omega$ to be R_4 .

Charge Pump Output Capacitor

Using low ESR ceramic capacitor to reduce the output voltage ripple is recommended and output voltage ripple is dominated by the capacitance value. The minimum capacitance value can be calculated by the following equation:

AAT1164/AAT1164B/AAT1164C

$$C_{OUT} \ge \frac{I_{LOAD}}{2V_{ripple}f_S}$$

Example 6:

The output voltage ripple of V_{OUT3} and V_{OUT2} is under 1%, the minimum capacitance value can be calculated as

$$C_{OUT}(V_{OUT3}) \geq \frac{30mA}{\eta 2 \times 250mV \times 1.19MHz} \approx 0.1 \mu F$$

$$C_{OUT}(V_{OUT2}) \geq \frac{30mA}{\eta 2 \times 60mV \times 1.19MHz} \approx 0.33 \mu F$$

 η : Efficiency, about 60% at charge pump circuit

Table 5. Recommended Components


DESIGNATION	DESCRIPTION	
1	6.8 μH, 1.8A,	
L	MITSUMI C6-K1.8L 6R8	
	200mA 30V Schottky barrier	
U1, U2, U3	diode (SOT-23),	
	DIODES BAT54S	
<u></u>	2A 20V rectifier diode	
U	DIODES DFLS220L	
00	10 μF, 25V X5R ceramic	
C3	capacitor	
05 00 07	1 μF, 25V X5R ceramic	
C5, C6, C7	capacitor	
C0 C4 C0 C10 C10	0.1 μF, 50V X5R ceramic	
C2, C4, C9, C10, C12	capacitor	

Operational Amplifier

The AAT1164 has five independent amplifiers. The operational amplifiers are usually used to drive V_{COM} and the gamma correction divider string for TFT-LCD. The output resistors and capacitors of amplifiers are used as low pass filters and compensators for unity gain stable.

Soft Start Waveform

LAYOUT CONSIDERATION

The system's performances including switching noise, transient response, and PWM feedback loop stability are greatly affected by the PC board layout and grounding. There are some general guidelines for layout:

Inductor

Always try to use a low EMI inductor with a ferrite core.

Filter Capacitors

Place low ESR ceramics filter capacitors (between $0.1\mu F$ and $0.22\mu F$) close to VDD and VREF pins. This will eliminate as much trace inductance effects as possible and give the internal IC rail a cleaner voltage

supply. The ground connection of the VDD and VREF bypass capacitor should be connected to the analog ground pin (GND) with a wide trace.

Output Capacitors

Place output capacitors as close as possible to the IC. Minimize the length and maximize the width of traces to get the best transient response and reduce the ripple noise. We choose $10\mu F$ ceramics capacitor to reduce the ripple voltage, and use $0.1\mu F$ ceramics capacitor to reduce the ripple noise.

Advanced Analog Technology, Inc. –

AAT1164/AAT1164B/AAT1164C

Feedback

If external compensation components are needed for stability, they should also be placed close to the IC. Take care to avoid the feedback voltage-divider resistors' trace near the SW. Minimize feedback track lengths to avoid the digital signal noise of TFT control board.

Ground Plane

The grounds of the IC, input capacitors, and output capacitors should be connected close to a ground plane. It would be a good design rule to have a ground plane on the PCB. This will reduce noise and ground loop errors as well as absorb more of the EMI radiated by the inductor. For boards with more than two layers, a ground plane can be used to separate the power plane and the signal plane for improved performance.

PC Board Layout

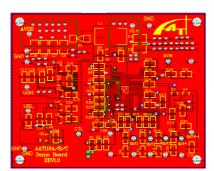


Figure 10. TOP Layer

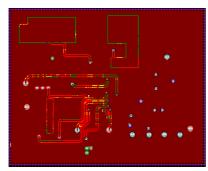


Figure 11. Midlayer1 (Ground Plane)

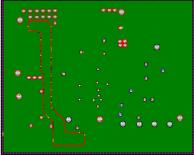
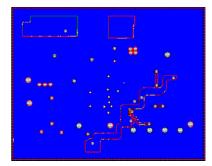
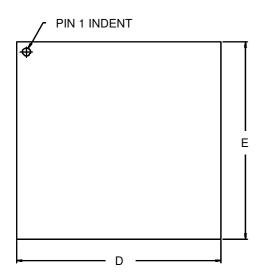
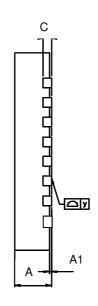
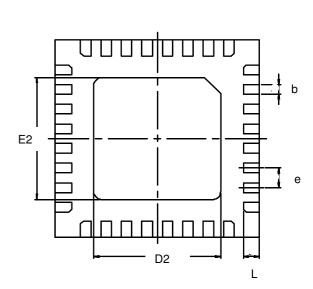


Figure 12. Midlayer2 (Power Plane)




Figure 13. Bottom Layer




AAT1164/AAT1164B/AAT1164C

PACKAGE DIMENSION

VQFN32

Cymbol	Dimensions In Millimeters			
Symbol	MIN	TYP	MAX	
Α	0.8	0.9	1.0	
A1	0.00	0.02	0.05	
b	0.18	0.25	0.30	
С		0.2		
D	4.9	5.0	5.1	
D2	3.05	3.10	3.15	
E	4.9	5.0	5.1	
E2	3.05	3.10	3.15	
е		0.5		
L	0.35	0.40	0.45	
V	0.000		0.075	