HTCICC64 HITAG µ RO64 transponder IC Rev. 3.1 – 24 July 2009

176431

Product data sheet PUBLIC

1. General description

The HITAG product line is well known and established in the contactless identification market.

Due to the open marketing strategy of NXP Semiconductors there are various manufacturers well established for both the transponder / cards as well as the Read/Write Devices. All of them supporting HITAG transponder IC's.

With the new HITAG μ RO64, NXP is addressing the low end LF market, by offering a preprogrammed, read only IC variant.

The advantages of this transponder IC are:

- proven HITAG performance
- easy to assemble because of mega-bumps
- Iow cost manufacturing because of preprogrammed TTF code

The HITAG μ RO64 operates in a continuous TTF mode where it modulates the reader field with it's preprogrammed 64-bit memory content.

2. Features

2.1 Features

- Integrated circuit for contactless identification transponders and cards
- Integrated resonance capacitor of 210 pF with ± 3% tolerance or 280 pF with ± 5% tolerance over full production
- Frequency range 100 kHz to 150 kHz
- 64-bit preprogrammed TTF response
- 10 years data retention

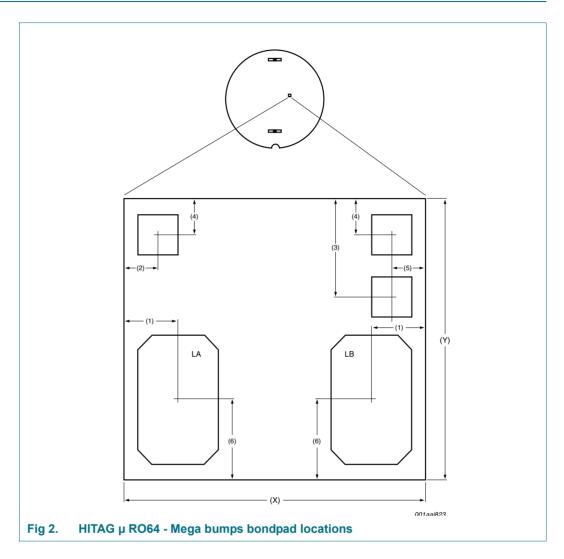
2.2 Delivery types

Sawn, megabumped wafer, 150 μm, 8 inch, UV

3. Ordering information

Table 1. Ordering info	rmation			
Type number	Package			
	Name	Description	Туре	Version
HTCICC6402FUG/AM	Wafer	sawn, megabumped wafer, 150 μm, 8 inch, UV	HITAG μ RO64, 210 pF	<tbd></tbd>
HTCICC6403FUG/AM	Wafer	sawn, megabumped wafer, 150 µm, 8 inch, UV	HITAG μ RO64, 280 pF	<tbd></tbd>

4. Block diagram


The HITAG μ RO64 transponder IC requires no external power supply. The contactless interface generates the power supply and the system clock via the resonant circuitry by inductive coupling to the read/write device (RWD). The interface also demodulates data transmitted from the RWD to the HITAG μ RO64 transponder IC, and modulates the magnetic field for data transmission from the HITAG μ RO64 transponder IC to the RWD.

ANALOGUE DIGITAL CONTROL EEPROM **RF INTERFACE** VREG PAD VDD Ø ANTICOLLISION ŧ RECT DEMOD **READ/WRITE** data CONTROL ₽ in 本 \approx TRANSPONDER ACCESS CONTROL Cres MOD data out Ŧ EEPROM INTERFACE R/W CONTROL CLK PAD \mathcal{M} clock RF INTERFACE CONTROL SEQUENCER ЛЛ CHARGE PUMP 001aai334 Fig 1. Block diagram of HITAG µ RO64 transponder IC

Data are stored in a non-volatile memory (EEPROM).

HITAG µ RO64 transponder IC

5. Pinning information

Table 2. HITAG µ RO64 - Mega bumps dimensions

Description	Dimension
(X) chip size	550 μm
(Y) chip size	550 μm
(1) pad center to chip edge	100.5 µm
(2) pad center to chip edge	48.708 μm
(3) pad center to chip edge	180.5 μm
(4) pad center to chip edge	55.5 µm
(5) pad center to chip edge	48.508 μm
(6) pad center to chip edge	165.5 μm
Bump Size:	
LA, LB	294 × 164 µm
Remaining pads	60 × 60 μm

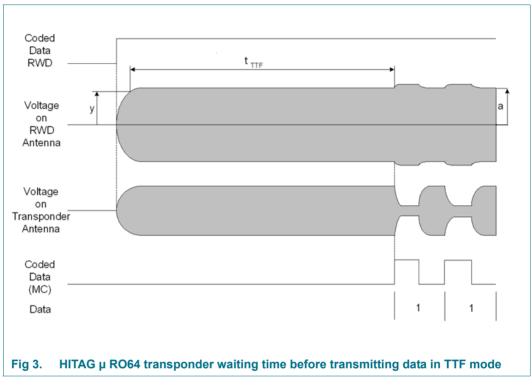
Note: All pads except LA and LB are electrically disconnected after dicing.

176431

6. Functional description

6.1 Memory organization

The memory is preprogrammed as shown in <u>Table 3</u>. This data gets continuously sent back as soon as the transponder receives sufficient energy.


Table 3. Memory organization HITAG µ RO64

	, ,						
			TTF	ID7			
MSB							LSB
1	1	1	1	1	1	1	1
			TTF	FID6			
MSB							LSB
1	VBit7	VBit6	VBit5	VBit4	P VBit7-4	VBit3	VBit2
			TTF	ID5			
MSB							LSB
VBit 1	VBit0	P VBit3-0	DBit31	DBit30	DBit29	DBit28	P DBit31-28
			TTF	FID4			
MSB							LSB
DBit27	DBit26	DBit25	DBit24	P DBit27-24	DBit23	DBit22	DBit21
			TTF	F ID3			
MSB							LSB
DBit20	P DBit23-20	DBit19	DBit18	DBit17	DBit16	P DBit19-16	DBit15
			TTF	ID2			
MSB							LSB
DBit14	DBit13	DBit12	P DBit15-12	DBit11	DBit10	DBit9	DBit8
			TTF	FID1			
MSB							LSB
P DBit11-8	DBit7	DBit6	DBit5	DBit4	P DBit7-4	DBit3	DBit2
			TTF	F ID0			
MSB							LSB
DBit1	DBit0	PDBit3-0	PColumn0	PColumn1	PColumn2	PColumn3	Stopbit
L	1	I	1	1	1	1	1

P Column 0:	DBit31	DBit27	DBit23	DBit19	DBit15	DBit11	DBit7	DBit3
P Column 1:	DBit30	DBit26	DBit22	DBit18	DBit14	DBit10	DBit6	DBit2
P Column 2:	DBit29	DBit25	DBit21	DBit17	DBit13	DBit9	DBit5	DBit1
P Column 3:	DBit28	DBit24	DBit20	DBit16	DBit12	DBit8	DBit4	DBit0

7. Protocol timing

7.1 HITAG μ RO64 transponder waiting time before transmitting data in TTF mode

After switching on the powering field, the HITAG μ RO64 transponder waits a time t_{TTF} before transmitting data.

Symbol	Parameter	Min	Тур	Мах	Unit
t _{TTF}	T ₀ = 1/125 kHz = 8 μs	250	304	400	T ₀

8. Limiting values

Table 4. Limiting values^{[1][2]}

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Мах	Unit
Symbol	Falameter	Conditions	IAIIII	IVIAN	Unit
T _{stg}	storage temperature		-55	+125	°C
V_{ESD}	electrostatic discharge voltage	JEDEC JESD 22-A114-AB Human Body Model	± 2	-	kV
I _{I(max)}	maximum input current	IN1-IN2	-	±20	mA _{peak}
Tj	junction temperature		-40	+85	°C

[1] Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any conditions other than those described in the Operating Conditions and Electrical Characteristics section of this specification is not implied.

[2] This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive static charge. Nonetheless, it is suggested that conventional precautions should be taken to avoid applying values greater than the rated maxima

9. Characteristics

Table 5. Characteristics

Symbol	Parameter	Conditions		Min	Тур	Мах	Unit
f _{oper}	operating frequency			100	125	150	kHz
l _l	input current	IN1-IN2		-	-	± 10	mA _{peak}
V _{IN1-IN2}	input voltage			4	5	6	V_{peak}
Ci	input capacitance between IN1-IN2	$V_{IN1-IN2}$ = 0.5 V_{rms}	[2][3]	203.7	210	216.3	pF
Ci	input capacitance between IN1-IN2	$V_{IN1-IN2}$ = 0.5 V_{rms}	[2][4]	266	280	294	pF

[1] Typical ratings are not guaranteed. Values are at 25°C.

[2] Measured with an HP4285A LCR meter at 125 kHz/room temperature (25 °C)

[3] Integrated Resonance Capacitor: 210 pF \pm 3 %

[4] Integrated Resonance Capacitor: 280 pF \pm 5%

10. Abbreviations

Abbreviation	Definition
AC	Anticollision Code
ASK	Amplitude Shift Keying
BC	Bi-phase Code
BPLC	Binary Pulse Length Coding
CRC	Cyclic Redundancy Check
DSFID	Data Storage Format Identifier
EEPROM	Electrically Erasable Programmable Memory
EOF	End Of Frame
ICR	Integrated Circuit Reference number
LSB	Least Significant Bit
LSByte	Least Significant Byte
m	Modulation Index
MC	Manchester Code
MFC	integrated circuit Manufacturer Code
MSB	Most Significant Bit
MSByte	Most Significant Byte
MSN	Manufacturer Serial Number
NA	No Access
NOB	Number Of Block
NOP	Number Of Pages
NOS	Number Of Slots
NSS	Number Of Sensors
OTP	One Time Programmable
PID	Product Identifier
PWD	Password
RFU	Reserved for Future Use
RND	Random Number
RO	Read Only
RTF	Reader Talks First
R/W	Read/Write
RWD	Read/Write Device
SOF	Start of Frame
TTF	Transponder Talks First
UID	Unique Identifier

11. References

[1] Application note — AN10214, HITAG Coil Design Guide, Transponder IC BL-ID Doc.No.: 0814**

12. Revision history

Table 7: Revi	sion history			
Document ID	Release date	Data sheet status	Change notice	Supersedes
176431	20090724	Product data sheet	-	176430
Modifications:	 Section 6.1 "N 	Memory organization": update Table 3		
176430	20090716	Product data sheet	-	-

13. Legal information

13.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

13.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

13.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of

the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

13.4 Licenses

ICs with HITAG functionality

NXP Semiconductors owns a worldwide perpetual license for the patents US 5214409, US 5499017, US 5235326 and for any foreign counterparts or equivalents of these patents. The license is granted for the Field-of-Use covering: (a) all non-animal applications, and (b) any application for animals raised for human consumption (including but not limited to dairy animals), including without limitation livestock and fish.

Please note that the license does not include rights outside the specified Field-of-Use, and that NXP Semiconductors does not provide indemnity for the foregoing patents outside the Field-of-Use.

13.5 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

HITAG — is a trademark of NXP B.V.

176431

HTCICC64

14. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

15. Tables

Table 1.	Ordering information
Table 2.	HITAG µ RO64 - Mega bumps dimensions4
Table 3.	Memory organization HITAG µ RO645
Table 4.	Limiting values ^{[1][2]} 7

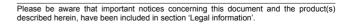

16. Figures

Fig 1.	Block diagram of HITAG µ RO64 transponder IC .3
Fig 2.	HITAG μ RO64 - Mega bumps bondpad
	locations

- Table 5.Characteristics7Table 6.Abbreviations8Table 7:Revision history10
- Fig 3. HITAG µ RO64 transponder waiting time before transmitting data in TTF mode6

17. Contents

1	General description 1
2	Features 1
2.1	Features
2.2	Delivery types 1
3	Ordering information 2
4	Block diagram 3
5	Pinning information 4
6	Functional description 5
6.1	Memory organization 5
7	Protocol timing
7.1	HITAG µ RO64 transponder waiting time before
	transmitting data in TTF mode
8	Limiting values
9	Characteristics
10	Abbreviations
11	References
12	Revision history 10
13	Legal information 11
13.1	Data sheet status 11
13.2	Definitions 11
13.3	Disclaimers
13.4	Licenses
13.5	Trademarks 11
14	Contact information 12
15	Tables
16	Figures 13
17	Contents 13

© NXP B.V. 2010.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

addresses@nxp.com Date of release: 24 July 2009 Document identifier: 176431

All rights reserved.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

NXP: HTCICC6402FUG/AM,0 HTCICC6403FUG/AM,0