
Voltage Transducer LV 100-2500

For the electronic measurement of voltages: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit).

$V_{PN} = 2500 \text{ V}$

Electrical data

$\mathbf{V}_{_{PN}}$	Primary nominal r.m.s. voltage		2500		V
V _P	Primary voltage, measuring range		0 ± 3	0 ± 3750	
I _{PN}	Primary nominal r.m.s. current		4		mΑ
$\mathbf{R}_{_{\mathrm{M}}}$	Measuring resistance		$\mathbf{R}_{_{\mathrm{Mmin}}}$	\mathbf{R}_{Mmax}	
	with ± 15 V	@ $\pm 2500 V_{max}$	0	170	Ω
		@ ± 3750 V _{max}	0	90	Ω
I _{SN}	Secondary nominal r.m.s. current		50		mΑ
K _N	Conversion ratio		2500 V	/ 50 m	Ą
v c	Supply voltage (± 5 %)		± 15		V
I _C	Current consumption		10 + I _s		mΑ
V _d	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn		9		kV

Accuracy - Dynamic performance data

X _G	Overall Accuracy @ V_{PN} , $T_A = 25^{\circ}C$ Linearity		± 0.7 < 0.1		% %
O	Offset current @ $\mathbf{I}_{\rm p}$ = 0, $\mathbf{T}_{\rm A}$ = 25°C Thermal drift of $\mathbf{I}_{\rm O}$ Response time @ 90 % of $\mathbf{V}_{\rm P \ max}$	0°C + 70°C	Typ ± 0.2 170	Max ± 0.2 ± 0.3	mA mA μs

General data

\mathbf{T}_{A}	Ambient operating temperature	0 + 70	°C
T _s	Ambient storage temperature	- 25 + 85	°C
N	Turns ratio	25000 : 2000	
Р	Total primary power loss	10	W
$\mathbf{R}_{_{1}}$	Primary resistance @ T _A = 25°C	625	$k\Omega$
\mathbf{R}_{s}	Secondary coil resistance @ T _A = 70°C	60	Ω
m	Mass	850	g
	Standards 1)	EN 50178	

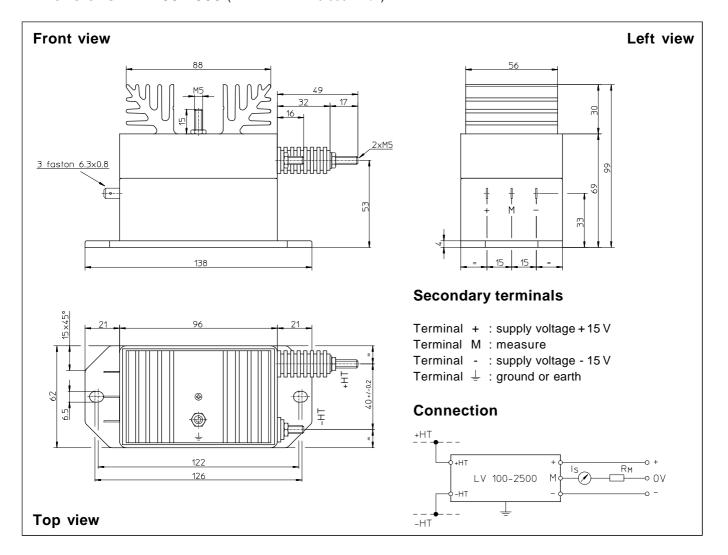
Features

- Closed loop (compensated) voltage transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0
- Primary resistor R₁ incorporated into the housing.

Advantages

- Excellent accuracy
- Very good linearity
- Low thermal drift
- High immunity to external interference.

Applications


- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Uninterruptible Power Supplies (UPS)
- Power supplies for welding applications.

Note: 1) A list of corresponding tests is available

981102/2

Dimensions LV 100-2500 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Fastening
- Connection of primary
- Connection of secondary
- Connection to the ground
- Fastening torque
- ± 0.3 mm 2 holes Ø 6.5 mm M5 threaded studs Faston 6.3 x 0.8 mm M5 threaded stud 2.2 Nm or 1.62 Lb. -Ft.

Remarks

- \mathbf{I}_{S} is positive when \mathbf{V}_{P} is applied on terminal +HT.
- The primary circuit of the transducer must be linked to the connections where the voltage has to be measured.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.