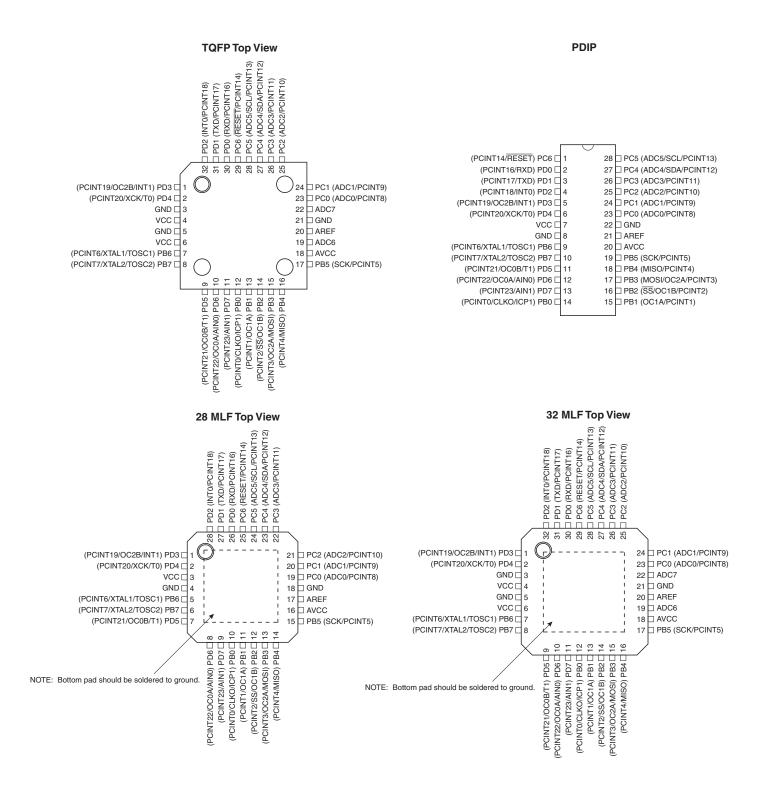
Features

- High Performance, Low Power AVR® 8-Bit Microcontroller
- Advanced RISC Architecture
 - 131 Powerful Instructions Most Single Clock Cycle Execution
 - 32 x 8 General Purpose Working Registers
 - Fully Static Operation
 - Up to 20 MIPS Throughput at 20 MHz
 - On-chip 2-cycle Multiplier
- High Endurance Non-volatile Memory Segments
 - 4/8/16/32K Bytes of In-System Self-Programmable Flash progam memory (ATmega48PA/88PA/168PA/328P)
 - 256/512/512/1K Bytes EEPROM (ATmega48PA/88PA/168PA/328P)
 - 512/1K/1K/2K Bytes Internal SRAM (ATmega48PA/88PA/168PA/328P)
 - Write/Erase Cycles: 10,000 Flash/100,000 EEPROM
 - Data retention: 20 years at 85°C/100 years at 25°C⁽¹⁾
 - Optional Boot Code Section with Independent Lock Bits In-System Programming by On-chip Boot Program True Read-While-Write Operation
 - Programming Lock for Software Security
- Peripheral Features
 - Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode
 - One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode
 - Real Time Counter with Separate Oscillator
 - Six PWM Channels
 - 8-channel 10-bit ADC in TQFP and QFN/MLF package Temperature Measurement
 - 6-channel 10-bit ADC in PDIP Package Temperature Measurement
 - Programmable Serial USART
 - Master/Slave SPI Serial Interface
 - Byte-oriented 2-wire Serial Interface (Philips I²C compatible)
 - Programmable Watchdog Timer with Separate On-chip Oscillator
 - On-chip Analog Comparator
 - Interrupt and Wake-up on Pin Change
- Special Microcontroller Features
 - Power-on Reset and Programmable Brown-out Detection
 - Internal Calibrated Oscillator
 - External and Internal Interrupt Sources
 - Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby, and Extended Standby
- I/O and Packages
 - 23 Programmable I/O Lines
 - 28-pin PDIP, 32-lead TQFP, 28-pad QFN/MLF and 32-pad QFN/MLF
- Operating Voltage:
 - 1.8 5.5V for ATmega48PA/88PA/168PA/328P
- Temperature Range:
 - -40°C to 85°C
- Speed Grade:
 - 0 20 MHz @ 1.8 5.5V
- Low Power Consumption at 1 MHz, 1.8V, 25°C for ATmega48PA/88PA/168PA/328P:
 - Active Mode: 0.2 mAPower-down Mode: 0.1 μA
 - Power-save Mode: 0.75 µA (Including 32 kHz RTC)

8-bit **AVR**® Microcontroller with 4/8/16/32K Bytes In-System Programmable Flash


ATmega48PA ATmega88PA ATmega168PA ATmega328P

Summary

1. Pin Configurations

Figure 1-1. Pinout ATmega48PA/88PA/168PA/328P

1.1 Pin Descriptions

1.1.1 VCC

Digital supply voltage.

1.1.2 GND

Ground.

1.1.3 Port B (PB7:0) XTAL1/XTAL2/TOSC1/TOSC2

Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Depending on the clock selection fuse settings, PB6 can be used as input to the inverting Oscillator amplifier and input to the internal clock operating circuit.

Depending on the clock selection fuse settings, PB7 can be used as output from the inverting Oscillator amplifier.

If the Internal Calibrated RC Oscillator is used as chip clock source, PB7..6 is used as TOSC2..1 input for the Asynchronous Timer/Counter2 if the AS2 bit in ASSR is set.

The various special features of Port B are elaborated in "Alternate Functions of Port B" on page 76 and "System Clock and Clock Options" on page 26.

1.1.4 Port C (PC5:0)

Port C is a 7-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The PC5..0 output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset condition becomes active, even if the clock is not running.

1.1.5 PC6/RESET

If the RSTDISBL Fuse is programmed, PC6 is used as an I/O pin. Note that the electrical characteristics of PC6 differ from those of the other pins of Port C.

If the RSTDISBL Fuse is unprogrammed, PC6 is used as a Reset input. A low level on this pin for longer than the minimum pulse length will generate a Reset, even if the clock is not running. The minimum pulse length is given in Table 28-3 on page 308. Shorter pulses are not guaranteed to generate a Reset.

The various special features of Port C are elaborated in "Alternate Functions of Port C" on page 79.

1.1.6 Port D (PD7:0)

Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not running.

The various special features of Port D are elaborated in "Alternate Functions of Port D" on page 82.

1.1.7 AV_{CC}

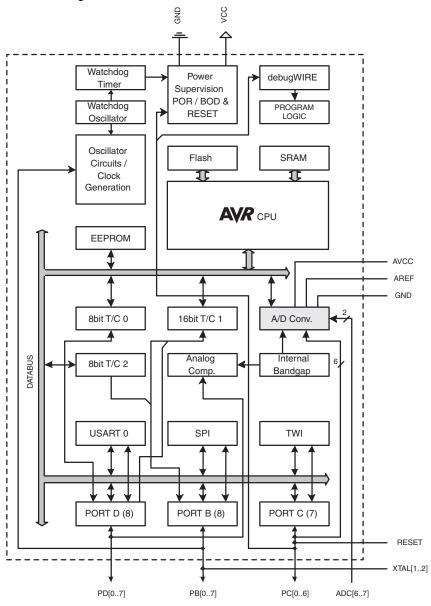
 AV_{CC} is the supply voltage pin for the A/D Converter, PC3:0, and ADC7:6. It should be externally connected to V_{CC} , even if the ADC is not used. If the ADC is used, it should be connected to V_{CC} through a low-pass filter. Note that PC6..4 use digital supply voltage, V_{CC} .

1.1.8 AREF

AREF is the analog reference pin for the A/D Converter.

1.1.9 ADC7:6 (TQFP and QFN/MLF Package Only)

In the TQFP and QFN/MLF package, ADC7:6 serve as analog inputs to the A/D converter. These pins are powered from the analog supply and serve as 10-bit ADC channels.



2. Overview

The ATmega48PA/88PA/168PA/328P is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega48PA/88PA/168PA/328P achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.

2.1 Block Diagram

Figure 2-1. Block Diagram

The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting

architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

The ATmega48PA/88PA/168PA/328P provides the following features: 4/8/16/32K bytes of In-System Programmable Flash with Read-While-Write capabilities, 256/512/512/1K bytes EEPROM, 512/1K/1K/2K bytes SRAM, 23 general purpose I/O lines, 32 general purpose working registers, three flexible Timer/Counters with compare modes, internal and external interrupts, a serial programmable USART, a byte-oriented 2-wire Serial Interface, an SPI serial port, a 6-channel 10-bit ADC (8 channels in TQFP and QFN/MLF packages), a programmable Watchdog Timer with internal Oscillator, and five software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, USART, 2-wire Serial Interface, SPI port, and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip functions until the next interrupt or hardware reset. In Power-save mode, the asynchronous timer continues to run, allowing the user to maintain a timer base while the rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules except asynchronous timer and ADC, to minimize switching noise during ADC conversions. In Standby mode, the crystal/resonator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low power consumption.

The device is manufactured using Atmel's high density non-volatile memory technology. The On-chip ISP Flash allows the program memory to be reprogrammed In-System through an SPI serial interface, by a conventional non-volatile memory programmer, or by an On-chip Boot program running on the AVR core. The Boot program can use any interface to download the application program in the Application Flash memory. Software in the Boot Flash section will continue to run while the Application Flash section is updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the Atmel ATmega48PA/88PA/168PA/328P is a powerful microcontroller that provides a highly flexible and cost effective solution to many embedded control applications.

The ATmega48PA/88PA/168PA/328P AVR is supported with a full suite of program and system development tools including: C Compilers, Macro Assemblers, Program Debugger/Simulators, In-Circuit Emulators, and Evaluation kits.

2.2 Comparison Between ATmega48PA, ATmega88PA, ATmega168PA and ATmega328P

The ATmega48PA, ATmega88PA, ATmega168PA and ATmega328P differ only in memory sizes, boot loader support, and interrupt vector sizes. Table 2-1 summarizes the different memory and interrupt vector sizes for the three devices.

Table 2-1. Memory Size Summary

Device	Flash	EEPROM	RAM	Interrupt Vector Size
ATmega48PA	4K Bytes	256 Bytes	512 Bytes	1 instruction word/vector
ATmega88PA	8K Bytes	512 Bytes	1K Bytes	1 instruction word/vector
ATmega168PA	16K Bytes	512 Bytes	1K Bytes	2 instruction words/vector
ATmega328P	32K Bytes	1K Bytes	2K Bytes	2 instruction words/vector

ATmega88PA, ATmega168PA and ATmega328P support a real Read-While-Write Self-Programming mechanism. There is a separate Boot Loader Section, and the SPM instruction can only execute from there. In ATmega48PA, there is no Read-While-Write support and no separate Boot Loader Section. The SPM instruction can execute from the entire Flash.

3. Resources

A comprehensive set of development tools, application notes and datasheets are available for download on http://www.atmel.com/avr.

4. Data Retention

Reliability Qualification results show that the projected data retention failure rate is much less than 1 PPM over 20 years at 85°C or 100 years at 25°C.

5. Register Summary

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0xFF)	Reserved	_	_	_	_	_	_	_	_	
(0xFE)	Reserved	_	_	_	_	_	_	_	_	
(0xFD)	Reserved	_	-	_	_	_	_	_	_	
(0xFC)	Reserved	_	_	_	_	_	_	_	_	
(0xFB)	Reserved	_	-	-	-	_	-	_	_	
(0xFA)	Reserved	_	_	-	_	_	_	_	_	
(0xF9)	Reserved	_	-	-	-	_	-	_	_	
(0xF8)	Reserved	_	_	-	_	_	_	_	_	
(0xF7)	Reserved	_	_	_	_	_	_	_	_	
(0xF6)	Reserved	-	-	-	-	-	-	_	-	
(0xF5)	Reserved	-	-		-	_	-	_		
(0xF4)	Reserved	=	-	=	-	_	-	_	=	
(0xF3)	Reserved	-	-	-	-	-	-	-	-	
(0xF2)	Reserved	-	-	-	-	_	_	_	-	
(0xF1)	Reserved	_	_	-	-	_	_	_	_	
(0xF0)	Reserved	-	-	-	-	_	_	_	-	
(0xEF)	Reserved	-	-	-	-	_	-	_	-	
(0xEE)	Reserved	-	-	-	-	-	-	_	-	
(0xED)	Reserved	-	-	-	-	_	-	_	-	
(0xEC)	Reserved	-	-	-	-	_	-	_	-	
(0xEB)	Reserved	-	-	-	-	-	-	_	-	
(0xEA)	Reserved	-	-	-	-	_	-	_	-	
(0xE9)	Reserved	-	-	-	-	-	-	-	-	
(0xE8)	Reserved	_	-	-	-	_	-	_	_	
(0xE7)	Reserved	-	-	-	-	-	-	_	-	
(0xE6)	Reserved	-	-	-	-	-	-	_	-	
(0xE5)	Reserved	-	-	-	-	-	-	-	-	
(0xE4)	Reserved	-	-	-	-	-	-	-	-	
(0xE3)	Reserved	-	-	-	-	-	-	-	-	
(0xE2)	Reserved	_	-	-	-	_	-	_	-	
(0xE1)	Reserved	_	-	-	-	_	_	_	_	
(0xE0)	Reserved	-	-	-	-	-	-	-	-	
(0xDF)	Reserved	_	-	-	-	_	-	_	-	
(0xDE)	Reserved	_	-	_	-	_	-	_	_	
(0xDD)	Reserved	-	-	-	-	-	-	-	-	
(0xDC)	Reserved	_	-	-	-	_	-	_	_	
(0xDB)	Reserved	_	-	-	-	-	-	_	-	
(0xDA)	Reserved	_	-	-	-	-	-	_	-	
(0xD9)	Reserved	_	-	-	-	-	-	_	_	
(0xD8)	Reserved	-	-	_	-	_	-	-	_	
(0xD7)	Reserved	=	-	-	-	-	-	=	_	
(0xD6)	Reserved	_	-	-	-	-	-	_	-	
(0xD5)	Reserved	-	-	_	_	-	-	_	_	
(0xD4)	Reserved	_	-	-	-	-	-	-	-	
(0xD3)	Reserved	-	-	-	-	-	-	-	-	
(0xD2)	Reserved	_	-	_	-	_	-	_	_	
(0xD1)	Reserved Reserved	_	-	_	-	-	-	_	_	
(0xD0)		_	-	_	_	_		_	_	
(0xCF) (0xCE)	Reserved Reserved	_	_	_		_	-	_	_	
(0xCE)	Reserved			_	_	_	-	_	-	
(0xCC)	Reserved	_	_	_	_		_	_		
(0xCC) (0xCB)	Reserved								-	
(0xCA)	Reserved	_	_	_	-	-	-	_		
(0xC9)	Reserved	_	_	_	_	_	_	_		
(0xC9) (0xC8)	Reserved	_	_	_		_	_	_		
(0xC8) (0xC7)	Reserved	_	_	_		_	_	_	-	
(0xC6)	UDR0			_		Data Register		_		189
(0xC5)	UBRR0H				USAITI I/U	Data Hegistel	USART Raud F	Rate Register High	1	193
(0xC4)	UBRR0L				USART Raud B	ate Register Low		iato i legistei i ligi	•	193
		i .			John Daud I					100
(0xC3)	Reserved	_	_	_	_	_	_	_	_	

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0xC1) (0xC0)	UCSR0B UCSR0A	RXCIE0 RXC0	TXCIE0 TXC0	UDRIE0 UDRE0	RXEN0 FE0	TXEN0 DOR0	UCSZ02 UPE0	RXB80 U2X0	TXB80 MPCM0	190 189
(0xBF)	Reserved	- -	-	- ODREO	FEU -		— UPEU	- -	-	109
(0xBE)	Reserved	_	-	_	_	_	_	_	_	
(0xBD)	TWAMR	TWAM6	TWAM5	TWAM4	TWAM3	TWAM2	TWAM1	TWAM0	_	239
(0xBC)	TWCR	TWINT	TWEA	TWSTA	TWSTO	TWWC	TWEN	_	TWIE	236
(0xBB)	TWDR		1	1	2-wire Serial Inter			1	1	238
(0xBA)	TWAR	TWA6	TWA5	TWA4	TWA3	TWA2	TWA1	TWA0	TWGCE	239
(0xB9) (0xB8)	TWSR TWBR	TWS7	TWS6	TWS5	TWS4 2-wire Serial Interfa	TWS3	- eter	TWPS1	TWPS0	238 236
(0xB7)	Reserved	_		_	Ville Serial IIIteria	–	_	_	_	230
(0xB6)	ASSR	_	EXCLK	AS2	TCN2UB	OCR2AUB	OCR2BUB	TCR2AUB	TCR2BUB	158
(0xB5)	Reserved	_	-	-	-	_	_	_	=	
(0xB4)	OCR2B			Tir	mer/Counter2 Outpo	ut Compare Regis	ster B			156
(0xB3)	OCR2A			Tir	mer/Counter2 Outp		ster A			156
(0xB2)	TCNT2	50004				nter2 (8-bit)	0000	0004	0000	156
(0xB1) (0xB0)	TCCR2B TCCR2A	FOC2A COM2A1	FOC2B COM2A0	COM2B1	COM2B0	WGM22	CS22 -	CS21 WGM21	CS20 WGM20	155 152
(0xAF)	Reserved	-	-	-	-	_	_	-	-	132
(0xAE)	Reserved	_	_	_	_	_	_	_	_	
(0xAD)	Reserved	_	-	_	-	-	-	-	-	
(0xAC)	Reserved	-	-	_	-	_	_	-	-	
(0xAB)	Reserved	_	-	-	-	-	_	-	_	
(0xAA)	Reserved	_	_	_	_	_	_	_	-	
(0xA9)	Reserved	-	-	_	_	-	-	_	_	
(0xA8) (0xA7)	Reserved Reserved	_	_	_		_	_	_	_	
(0xA7)	Reserved	_	_	_	_	_	_	_	_	
(0xA5)	Reserved	_	-	_	_	_	_	_	_	
(0xA4)	Reserved	_	_	_	_	_	_	_	_	
(0xA3)	Reserved	_	-		_	_		_	-	
(0xA2)	Reserved	-	-	-	-	-	-	-	-	
(0xA1)	Reserved	=	_	_	_	_	_	_	_	
(0xA0) (0x9F)	Reserved Reserved	_	_	_	_	_	_	_	_	
(0x9E)	Reserved	_	_	_		_	_		_	
(0x9D)	Reserved	_	_	_	_	_	_	_	_	
(0x9C)	Reserved	_	-		-	_	_	-	-	
(0x9B)	Reserved	-	=	-	=	-	_	-	=	
(0x9A)	Reserved	-	-	-	-	-	-	-	-	
(0x99)	Reserved	-	-	-	-	-	-	-	-	
(0x98)	Reserved	_	-	-	-	_	_	_	_	
(0x97) (0x96)	Reserved Reserved	_	_	_	_	-	-	_	_	
(0x95)	Reserved			_						
(0x94)	Reserved	-	-	-	_	-	-	-	_	
(0x93)	Reserved	-	-	-	_	-	-	-	_	
(0x92)	Reserved	-	-	-	-	-	-	-	-	
(0x91)	Reserved	-	=	-	_	-	-	-	_	
(0x90)	Reserved	_	_	-	-	_	-	-	-	
(0x8F)	Reserved	-	-	-	_	-	-	-	_	
(0x8E) (0x8D)	Reserved Reserved	_	_	_	_	_	_	_	_	
(0x8D) (0x8C)	Reserved	_	_	_	_	_	_	_		
(0x8B)	OCR1BH				ounter1 - Output Co	mpare Register E				132
(0x8A)	OCR1BL				ounter1 - Output Co					132
(0x89)	OCR1AH			Timer/Co	ounter1 - Output Co	mpare Register	A High Byte		_	132
(0x88)	OCR1AL				ounter1 - Output Co					132
(0x87)	ICR1H				/Counter1 - Input C					133
(0x86)	ICR1L				/Counter1 - Input C		•			133
(0x85)	TCNT1H				ner/Counter1 - Cou					132
(0x84)	TCNT1L Reserved	_	_	Tin	ner/Counter1 - Cou –	nter Register Low _	/ Byte _	_	_	132
(0x83) (0x82)	Reserved TCCR1C	FOC1A	FOC1B	_		_	_	_		131
(0x81)	TCCR1B	ICNC1	ICES1	_	WGM13	WGM12	CS12	CS11	CS10	130
(0x80)	TCCR1A	COM1A1	COM1A0	COM1B1	COM1B0	-	-	WGM11	WGM10	128
. , ,		•	•	•	•			•		

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0x7F)	DIDR1	_	_	_	_	_	_	AIN1D	AIN0D	244
(0x7E)	DIDR0	_	_	ADC5D	ADC4D	ADC3D	ADC2D	ADC1D	ADC0D	261
(0x7D)	Reserved	_	-	=	-	-	_	=	-	
(0x7C)	ADMUX	REFS1	REFS0	ADLAR	_	MUX3	MUX2	MUX1	MUX0	257
(0x7B)	ADCSRB	-	ACME	-	-	-	ADTS2	ADTS1	ADTS0	260
(0x7A)	ADCSRA	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0	258
(0x79)	ADCH					gister High byte				260
(0x78)	ADCL				ADC Data Reg	gister Low byte				260
(0x77)	Reserved	_	-	_	-	_	_	_	-	
(0x76) (0x75)	Reserved Reserved	_	_		_	_	_	_	_	
(0x73) (0x74)	Reserved		_		_		_	_	_	
(0x73)	Reserved	_	_	_	_	_	_	_	_	
(0x72)	Reserved	-	-	-	-	-	-	-	-	
(0x71)	Reserved	_	-	_	-	-	_	_	_	
(0x70)	TIMSK2	-	-	-	-	-	OCIE2B	OCIE2A	TOIE2	157
(0x6F)	TIMSK1	-	-	ICIE1	-	-	OCIE1B	OCIE1A	TOIE1	133
(0x6E)	TIMSK0	-	-	-	-	-	OCIE0B	OCIE0A	TOIE0	105
(0x6D)	PCMSK2	PCINT23	PCINT22	PCINT21	PCINT20	PCINT19	PCINT18	PCINT17	PCINT16	68
(0x6C)	PCMSK1	PCINIT7	PCINT14	PCINT13	PCINT12	PCINT11	PCINT10	PCINT9	PCINT8	68
(0x6B) (0x6A)	PCMSK0 Reserved	PCINT7	PCINT6	PCINT5	PCINT4	PCINT3	PCINT2	PCINT1	PCINT0	68
(0x6A) (0x69)	Reserved EICRA		_		_	ISC11	ISC10	ISC01	ISC00	65
(0x68)	PCICR		_		_	-	PCIE2	PCIE1	PCIE0	03
(0x67)	Reserved	_	_	_	_	_	-	-	-	
(0x66)	OSCCAL				Oscillator Calib	oration Register				37
(0x65)	Reserved	_	-	_	-	_	_	_	_	
(0x64)	PRR	PRTWI	PRTIM2	PRTIM0	-	PRTIM1	PRSPI	PRUSART0	PRADC	42
(0x63)	Reserved	-	-	-	-	-	_	-	-	
(0x62)	Reserved	-	-	-	-	-	-	=	-	
(0x61)	CLKPR	CLKPCE	-	-	-	CLKPS3	CLKPS2	CLKPS1	CLKPS0	37
(0x60)	WDTCSR	WDIF	WDIE	WDP3	WDCE	WDE	WDP2	WDP1	WDP0	54
0x3F (0x5F) 0x3E (0x5E)	SREG SPH		T -	H -	S -	V	(SP10) ^{5.}	Z SP9	C SP8	9 12
0x3D (0x5D)	SPL	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SP0	12
0x3C (0x5C)	Reserved	-	-	-	-	-	-	-	-	12
0x3B (0x5B)	Reserved	-	-	_	-	-	_	-	_	
0x3A (0x5A)	Reserved	_	-	_	-	_	_	_	_	
0x39 (0x59)	Reserved	-	-	-	-	-	-	-	-	
0x38 (0x58)	Reserved	-	-	-	-	-	_	-	-	
0x37 (0x57)	SPMCSR	SPMIE	(RWWSB) ^{5.}	_	(RWWSRE) ^{5.}	BLBSET	PGWRT	PGERS	SELFPRGEN	284
0x36 (0x56)	Reserved	-	-	-	-	-	_	-	-	
0x35 (0x55)	MCUCR	-	BODS	BODSE	PUD	-	-	IVSEL	IVCE	44/62/86
0x34 (0x54)	MCUSR	_	-	_	-	WDRF	BORF	EXTRF	PORF	54
0x33 (0x53) 0x32 (0x52)	SMCR Reserved	_	_			SM2	SM1	SM0 -	SE -	40
0x32 (0x52) 0x31 (0x51)	Reserved	_	_	_		_	_	_	_	
0x30 (0x50)	ACSR	ACD	ACBG	ACO	ACI	ACIE	ACIC	ACIS1	ACIS0	242
0x2F (0x4F)	Reserved	-	-	-	-	-	-	-	-	·-
0x2E (0x4E)	SPDR				SPI Data	Register				169
0x2D (0x4D)	SPSR	SPIF	WCOL	-	=	=	-	_	SPI2X	168
0x2C (0x4C)	SPCR	SPIE	SPE	DORD	MSTR	CPOL	CPHA	SPR1	SPR0	167
0x2B (0x4B)	GPIOR2					se I/O Register 2				25
0x2A (0x4A)	GPIOR1				1	e I/O Register 1				25
0x29 (0x49)	Reserved	-	_					-	-	
0x28 (0x48) 0x27 (0x47)	OCR0B OCR0A				mer/Counter0 Outpo					
0x27 (0x47) 0x26 (0x46)	TCNT0					ut Compare Regi: nter0 (8-bit)	SIEI A			
0x26 (0x46) 0x25 (0x45)	TCCR0B	FOC0A	FOC0B	_	-	WGM02	CS02	CS01	CS00	
UNEO (UNEO)	TCCR0A	COM0A1	COM0A0	COM0B1	COM0B0	- vvaivioz	-	WGM01	WGM00	
0x24 (0x44)	ICCHUA		-	-	-	-	-	PSRASY	PSRSYNC	137/159
0x24 (0x44) 0x23 (0x43)	GTCCR	TSM								
, ,		TSM		(1	EEPROM Address I	Register High Byt	:e) ^{5.}			21
0x23 (0x43)	GTCCR	TSM		(EEPROM Address I EEPROM Address					21 21
0x23 (0x43) 0x22 (0x42)	GTCCR EEARH	TSM		(1	EEPROM Address					
0x23 (0x43) 0x22 (0x42) 0x21 (0x41)	GTCCR EEARH EEARL	TSM	_	EEPM1	EEPROM Address EEPROM D EEPM0	Register Low By		EEPE	EERE	21

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
0x1D (0x3D)	EIMSK	_	_	_	_	_	_	INT1	INT0	66
0x1C (0x3C)	EIFR	_	_	_	_	_	_	INTF1	INTF0	66
0x1B (0x3B)	PCIFR	-	-	-	-	-	PCIF2	PCIF1	PCIF0	
0x1A (0x3A)	Reserved	-	-	-	-	-	_	-	-	
0x19 (0x39)	Reserved	-	-	-	-	-	_	-	_	
0x18 (0x38)	Reserved	-	-	-	-	-	-	-	-	
0x17 (0x37)	TIFR2	-	-	-	-	-	OCF2B	OCF2A	TOV2	157
0x16 (0x36)	TIFR1	-	-	ICF1	-	-	OCF1B	OCF1A	TOV1	134
0x15 (0x35)	TIFR0	-	-	-	-	-	OCF0B	OCF0A	TOV0	
0x14 (0x34)	Reserved	-	-	-	-	-	-	-	-	
0x13 (0x33)	Reserved	-	-	-	-	-	_	-	_	
0x12 (0x32)	Reserved	-	-	-	-	-	_	-	_	
0x11 (0x31)	Reserved	-	-	-	-	-	-	-	-	
0x10 (0x30)	Reserved	-	-	-	-	-	_	-	_	
0x0F (0x2F)	Reserved	-	-	-	-	-	-	-	-	
0x0E (0x2E)	Reserved	-	-	-	-	-	-	-	-	
0x0D (0x2D)	Reserved	-	-	-	-	-	_	-	_	
0x0C (0x2C)	Reserved	-	-	-	-	-	-	-	-	
0x0B (0x2B)	PORTD	PORTD7	PORTD6	PORTD5	PORTD4	PORTD3	PORTD2	PORTD1	PORTD0	87
0x0A (0x2A)	DDRD	DDD7	DDD6	DDD5	DDD4	DDD3	DDD2	DDD1	DDD0	87
0x09 (0x29)	PIND	PIND7	PIND6	PIND5	PIND4	PIND3	PIND2	PIND1	PIND0	87
0x08 (0x28)	PORTC	-	PORTC6	PORTC5	PORTC4	PORTC3	PORTC2	PORTC1	PORTC0	86
0x07 (0x27)	DDRC	-	DDC6	DDC5	DDC4	DDC3	DDC2	DDC1	DDC0	86
0x06 (0x26)	PINC	_	PINC6	PINC5	PINC4	PINC3	PINC2	PINC1	PINC0	86
0x05 (0x25)	PORTB	PORTB7	PORTB6	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	86
0x04 (0x24)	DDRB	DDB7	DDB6	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	86
0x03 (0x23)	PINB	PINB7	PINB6	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	86
0x02 (0x22)	Reserved	_	-	-	_	-	_	-	_	
0x01 (0x21)	Reserved	_	-	-	-	-	-	-	_	
0x0 (0x20)	Reserved	_	-	_	_	_	_	_	_	

- 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.
- 2. I/O Registers within the address range 0x00 0x1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.
- Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI
 instructions will only operate on the specified bit, and can therefore be used on registers containing such Status Flags. The
 CBI and SBI instructions work with registers 0x00 to 0x1F only.
- 4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 0x3F must be used. When addressing I/O Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The ATmega48PA/88PA/168PA/328P is a complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.
- 5. Only valid for ATmega88PA.

6. Instruction Set Summary

Mnemonics	Operands	Description	Operation	Flags	#Clocks
ARITHMETIC AND L	OGIC INSTRUCTIONS	8			l
ADD	Rd, Rr	Add two Registers	$Rd \leftarrow Rd + Rr$	Z,C,N,V,H	1
ADC	Rd, Rr	Add with Carry two Registers	$Rd \leftarrow Rd + Rr + C$	Z,C,N,V,H	1
ADIW	Rdl,K	Add Immediate to Word	Rdh:Rdl ← Rdh:Rdl + K	Z,C,N,V,S	2
SUB	Rd, Rr	Subtract two Registers	$Rd \leftarrow Rd - Rr$	Z,C,N,V,H	1
SUBI	Rd, K	Subtract Constant from Register	Rd ← Rd - K	Z,C,N,V,H	1
SBC	Rd, Rr	Subtract with Carry two Registers	$Rd \leftarrow Rd - Rr - C$	Z,C,N,V,H	1
SBCI	Rd, K	Subtract with Carry Constant from Reg.	Rd ← Rd - K - C	Z,C,N,V,H	1
SBIW	Rdl,K	Subtract Immediate from Word	Rdh:Rdl ← Rdh:Rdl - K	Z,C,N,V,S	2
AND	Rd, Rr	Logical AND Registers	$Rd \leftarrow Rd \bullet Rr$	Z,N,V	1
ANDI	Rd, K	Logical AND Register and Constant	$Rd \leftarrow Rd \bullet K$	Z,N,V	1
OR	Rd, Rr	Logical OR Registers	Rd ← Rd v Rr	Z,N,V	1
ORI	Rd, K	Logical OR Register and Constant	Rd ← Rd v K	Z,N,V	1
EOR	Rd, Rr	Exclusive OR Registers	Rd ← Rd ⊕ Rr	Z,N,V	1
COM	Rd	One's Complement	Rd ← 0xFF – Rd	Z,C,N,V	1
NEG	Rd	Two's Complement	Rd ← 0x00 – Rd	Z,C,N,V,H	1
SBR	Rd,K	Set Bit(s) in Register	Rd ← Rd v K	Z,N,V	1
CBR	Rd,K	Clear Bit(s) in Register	Rd ← Rd • (0xFF - K)	Z,N,V	1
INC DEC	Rd Rd	Increment Decrement	$Rd \leftarrow Rd + 1$ $Rd \leftarrow Rd - 1$	Z,N,V Z,N,V	1
TST	Rd	Test for Zero or Minus	Rd ← Rd • Rd	Z,N,V Z,N,V	1
	Rd			Z,N,V	1
CLR SER	Rd	Clear Register Set Register	$Rd \leftarrow Rd \oplus Rd$ $Rd \leftarrow 0xFF$	None	1
MUL	Rd, Rr	Multiply Unsigned	$R1:R0 \leftarrow Rd \times Rr$	Z,C	2
MULS	Rd, Rr	Multiply Signed	R1:R0 ← Rd x Rr	Z,C	2
MULSU	Rd, Rr	Multiply Signed with Unsigned	R1:R0 ← Rd x Rr	Z,C	2
FMUL	Rd, Rr	Fractional Multiply Unsigned	R1:R0 ← (Rd x Rr) << 1	Z,C	2
FMULS	Rd, Rr	Fractional Multiply Signed	R1:R0 ← (Rd x Rr) << 1	Z,C	2
FMULSU	Rd, Rr	Fractional Multiply Signed with Unsigned	$R1:R0 \leftarrow (Rd \times Rr) << 1$	Z,C	2
BRANCH INSTRUCT		Traditional manaphy digitidal man difference	Time (next)	_,0	_
RJMP	k	Relative Jump	PC ← PC + k + 1	None	2
IJMP		Indirect Jump to (Z)	PC ← Z	None	2
JMP ⁽¹⁾	k	Direct Jump	PC ← k	None	3
RCALL	k	Relative Subroutine Call	PC ← PC + k + 1	None	3
ICALL		Indirect Call to (Z)	PC ← Z	None	3
CALL ⁽¹⁾	k	Direct Subroutine Call	PC ← k	None	4
RET		Subroutine Return	PC ← STACK	None	4
RETI		Interrupt Return	PC ← STACK	1	4
CPSE	Rd,Rr	Compare, Skip if Equal	if (Rd = Rr) PC \leftarrow PC + 2 or 3	None	1/2/3
CP	Rd,Rr	Compare	Rd – Rr	Z, N,V,C,H	1
CPC	Rd,Rr	Compare with Carry	Rd – Rr – C	Z, N,V,C,H	1
CPI	Rd,K	Compare Register with Immediate	Rd – K	Z, N,V,C,H	1
SBRC	Rr, b	Skip if Bit in Register Cleared	if (Rr(b)=0) PC ← PC + 2 or 3	None	1/2/3
SBRS	Rr, b	Skip if Bit in Register is Set	if (Rr(b)=1) PC ← PC + 2 or 3	None	1/2/3
SBIC	P, b	Skip if Bit in I/O Register Cleared	if (P(b)=0) PC ← PC + 2 or 3	None	1/2/3
SBIS	P, b	Skip if Bit in I/O Register is Set	if (P(b)=1) PC ← PC + 2 or 3	None	1/2/3
BRBS	s, k	Branch if Status Flag Set	if $(SREG(s) = 1)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRBC	s, k	Branch if Status Flag Cleared	if (SREG(s) = 0) then PC←PC+k + 1	None	1/2
BREQ	k	Branch if Equal	if $(Z = 1)$ then PC \leftarrow PC + k + 1	None	1/2
BRNE	k	Branch if Not Equal	if $(Z = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRCS	k	Branch if Carry Set	if (C = 1) then PC ← PC + k + 1	None	1/2
BRCC	k	Branch if Carry Cleared	if (C = 0) then PC ← PC + k + 1	None	1/2
BRSH	k	Branch if Same or Higher	if (C = 0) then PC ← PC + k + 1	None	1/2
BRLO	k	Branch if Lower	if (C = 1) then PC ← PC + k + 1	None	1/2
BRMI	k	Branch if Minus	if (N = 1) then PC \leftarrow PC + k + 1	None	1/2
BRPL	k	Branch if Plus	if $(N = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRGE	k	Branch if Greater or Equal, Signed	if $(N \oplus V = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRLT	k	Branch if Less Than Zero, Signed	if (N ⊕ V= 1) then PC ← PC + k + 1	None	1/2
BRHS	k k	Branch if Half Carry Flag Set	if (H = 1) then PC \leftarrow PC + k + 1 if (H = 0) then PC \leftarrow PC + k + 1	None	1/2
BRHC		Branch if T Flog Set	if $(H = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRTS BRTC	k k	Branch if T Flag Set	if $(T = 1)$ then $PC \leftarrow PC + k + 1$ if $(T = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2 1/2
BRVS	k	Branch if T Flag Cleared Branch if Overflow Flag is Set	if $(I = 0)$ then $PC \leftarrow PC + k + 1$ if $(V = 1)$ then $PC \leftarrow PC + k + 1$	None	1/2
			` ,	None	
BRVC	k	Branch if Overflow Flag is Cleared	if $(V = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2

PRIFE K	Mnemonics	Operands	Description	Operation	Flags	#Clocks
BRID P.D Bet REN FOLD Register 1007 20 - 1 Nove 2 Nove		·		·	+	
Big Pa				, ,	1	1/2
Case Pa			Station is interrupt Bloading		110110	.,
ISS			Set Bit in I/O Register	I/O(P,b) ← 1	None	2
ESP	CBI	P,b	Clear Bit in I/O Register	$I/O(P,b) \leftarrow 0$	None	2
FOLK Fig. Florida Lett Through Carry Florida Children Florid	LSL	Rd	Logical Shift Left	$Rd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0$	Z,C,N,V	1
FORT FORT Float Float Floating Clarry Floating Charge	LSR	Rd	Logical Shift Right	$Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0$	Z,C,N,V	1
AST			· ·			1
SWAP Ref						
BSET						
BCST						
BT				•	` '	
Bot Belload from Tip Register Belloh = T						1
SEC Sec Carry			•	` '	1	
SEN						1
CLIN Clear Meagave Flag	CLC		Clear Carry	C ← 0	С	1
SEZ	SEN		Set Negative Flag	N ← 1	N	1
CL2	CLN		Clear Negative Flag	N ← 0		1
SEI			·			1
SES Set Spring Test Plag Set -1 Set Set Twos Complement Overflow V + 0 V + 1 V V 1 V V 1 V V V			· ·			+
SES Set Signed Teel Flag S + -1 S					1	
CLS			·		1	
SET V Set Twos Complement Overflow						
CLY						1
SET SeT IN SREG					<u> </u>	
CLT Clear in SREG T ← 0 T 1 SEH Set Half Carry Flag in SREG H ← 1 H 1 CLH Clear Nat Carry Flag in SREG H ← 0 H 1 MOV Rd, Rr Move Between Registers Rd ← Rr None 1 MCWW Rd, Rr Copy Register Word Rd ± 1:Rd ← R*1:Rr None 1 LDI Rd, K Load Indirect Rd ← K None 1 LD Rd, X Load Indirect Rd ← K None 2 LD Rd, Y Load Indirect and Post-Inc. Rd ← (X), X ← X + 1 None 2 LD Rd, Y Load Indirect and Post-Inc. Rd ← (Y) None 2 LD Rd, Y Load Indirect and Pre-Dec. X ← X + 1, Rd ← (X) None 2 LD Rd, Y Load Indirect and Pre-Dec. Y ← Y + 1, Rd ← (Y) None 2 LD Rd, Y Load Indirect and Pre-Dec. Y ← Y + 1, Rd ← (Y) None 2 LD			,			1
DATA TRANSFER INSTRUCTIONS						1
MOV	SEH		Set Half Carry Flag in SREG	H ← 1	Н	1
MOV Rd, Rr Move Between Registers Rd ← Rr None 1 MOVW Rd, Rr Copy Register Word Rd+1:Rd ← Rr+1:Rr None 1 LDI Rd, K Load Indirect Rd ← K None 1 LD Rd X Load Indirect and Post-Inc. Rd ← (X) None 2 LD Rd - X Load Indirect and Post-Inc. Rd ← (X) None 2 LD Rd, - X Load Indirect and Pret-Dec. X ← X - 1, Rd ← (X) None 2 LD Rd, Y Load Indirect and Post-Inc. Rd ← (Y) None 2 LD Rd, Y Load Indirect and Post-Inc. Rd ← (Y), Y ← Y + 1 None 2 LD Rd, Y Load Indirect and Post-Inc. Rd ← (Y), Y ← Y + 1 None 2 LD Rd, Y Load Indirect with Displacement Rd ← (Y) None 2 LD Rd, Y Load Indirect with Displacement Rd ← (Z) None 2 LD Rd, Y Load Indirect with Displacement	CLH		Clear Half Carry Flag in SREG	H ← 0	Н	1
MOVW Rd, Rr Copy Register Word Rd+1:Rd ← Rr+1:Rr None 1	DATA TRANSFER II	NSTRUCTIONS	_			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Rd, Rr	Move Between Registers		None	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					+	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				• • • • • • • • • • • • • • • • • • • •	1	
LD Rd, Y Load Indirect Rd ← (Y) None 2 LD Rd, Y+ Load Indirect and Post-Inc. Rd ← (Y), Y ← Y + 1 None 2 LD Rd, Y Load Indirect and Pre-Dec. Y ← Y + 1, Rd ← (Y) None 2 LDD Rd, Y+q Load Indirect with Displacement Rd ← (Z) None 2 LD Rd, Z Load Indirect and Post-Inc. Rd ← (Z) None 2 LD Rd, Z+ Load Indirect and Post-Inc. Rd ← (Z) None 2 LD Rd, Z- Load Indirect with Displacement Rd ← (Z) None 2 LD Rd, Z- Load Indirect with Displacement Rd ← (Z) None 2 LDS Rd, k Load Direct from SRAM Rd ← (K) None 2 ST X, Rr Store Indirect and Post-Inc. (X) ← Rr None 2 ST X+, Rr Store Indirect and Post-Inc. (X) ← Rr, X ← X + 1 None 2 ST Y+, Rr Store Indirect and Post-Inc.						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$, ,	1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				1	1	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				1.7		2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$, ,		2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	LD	Rd, Z	Load Indirect	$Rd \leftarrow (Z)$	None	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	LD	Rd, Z+	Load Indirect and Post-Inc.	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	LD	Rd, -Z	Load Indirect and Pre-Dec.	$Z \leftarrow Z - 1$, Rd \leftarrow (Z)	None	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	LDD	Rd, Z+q	Load Indirect with Displacement	$Rd \leftarrow (Z + q)$	None	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					1	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			†		1	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			·			2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				1		2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ST				None	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	STD	Z+q,Rr	Store Indirect with Displacement	(Z + q) ← Rr	None	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	STS	k, Rr	Store Direct to SRAM	(k) ← Rr		2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,			3
SPM Store Program Memory $(Z) \leftarrow R1:R0$ None - IN Rd, P In Port Rd \leftarrow P None 1 OUT P, Rr Out Port P \leftarrow Rr None 1				1		3
IN Rd, P In Port Rd ← P None 1 OUT P, Rr Out Port P ← Rr None 1		Rd, Z+	· ·		1	3
OUT P, Rr Out Port P ← Rr None 1		Dd D	· ·			-
PUSH Rr Push Register on Stack STACK \leftarrow Rr None 2	PUSH	Rr	Out Port Push Register on Stack	P ← Rr STACK ← Rr	1	2

Mnemonics	Operands	Description	Operation	Flags	#Clocks
POP	Rd	Pop Register from Stack	Rd ← STACK	None	2
MCU CONTROL INS	TRUCTIONS				
NOP		No Operation		None	1
SLEEP		Sleep	(see specific descr. for Sleep function)	None	1
WDR		Watchdog Reset	(see specific descr. for WDR/timer)	None	1
BREAK		Break	For On-chip Debug Only	None	N/A

7. Ordering Information

7.1 ATmega48PA

Speed (MHz)	Power Supply	Ordering Code ⁽²⁾	Package ⁽¹⁾	Operational Range
		ATmega48PA-AU	32A	
20 ⁽³⁾	1.8 - 5.5	ATmega48PA-MMH ⁽⁴⁾	28M1	Industrial
2017	1.6 - 5.5	ATmega48PA-MU	32M1-A	(-40°C to 85°C)
		ATmega48PA-PU	28P3	

- 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.
- 2. Pb-free packaging complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.
- 3. See "Speed Grades" on page 306.
- 4. NiPdAu Lead Finish.

	Package Type
32A	32-lead, Thin (1.0 mm) Plastic Quad Flat Package (TQFP)
28M1	28-pad, 4 x 4 x 1.0 body, Lead Pitch 0.45 mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)
32M1-A	32-pad, 5 x 5 x 1.0 body, Lead Pitch 0.50 mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)
28P3	28-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)

7.2 ATmega88PA

Speed (MHz)	Power Supply	Ordering Code ⁽²⁾	Package ⁽¹⁾	Operational Range
		ATmega88PA-AU	32A	
20 ⁽³⁾	1.8 - 5.5	ATmega88PA-MMH ⁽⁴⁾	28M1	Industrial
20\	1.0 - 5.5	ATmega88PA-MU	32M1-A	(-40°C to 85°C)
		ATmega88PA-PU	28P3	

- 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.
- 2. Pb-free packaging complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.
- 3. See "Speed Grades" on page 306.
- 4. NiPdAu Lead Finish.

	Package Type
32A	32-lead, Thin (1.0 mm) Plastic Quad Flat Package (TQFP)
28M1	28-pad, 4 x 4 x 1.0 body, Lead Pitch 0.45 mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)
32M1-A	32-pad, 5 x 5 x 1.0 body, Lead Pitch 0.50 mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)
28P3	28-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)

7.3 ATmega168PA

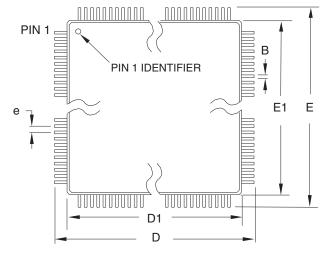
Speed (MHz) ⁽³⁾	Power Supply	Ordering Code ⁽²⁾	Package ⁽¹⁾	Operational Range
		ATmega168PA-AU	32A	
20		ATmega168PA-MMH ⁽⁴⁾	28M1	Industrial
		ATmega168PA-MU	32M1-A	(-40°C to 85°C)
		ATmega168PA-PU	28P3	

- 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.
- 2. Pb-free packaging complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.
- 3. See "Speed Grades" on page 312.
- 4. NiPdAu Lead Finish.

	Package Type				
32A	32-lead, Thin (1.0 mm) Plastic Quad Flat Package (TQFP)				
28M1	28-pad, 4 x 4 x 1.0 body, Lead Pitch 0.45 mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)				
32M1-A	2M1-A 32-pad, 5 x 5 x 1.0 body, Lead Pitch 0.50 mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)				
28P3	28-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)				

7.4 ATmega328P

Speed (MHz)	Power Supply	Ordering Code ⁽²⁾	Package ⁽¹⁾	Operational Range
20 ⁽³⁾	1.8 - 5.5	ATmega328P- AU ATmega328P- MU ATmega328P- PU	32A 32M1-A 28P3	Industrial (-40°C to 85°C)


- 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.
- 2. Pb-free packaging complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.
- 3. See Figure 28-1 on page 316.

	Package Type			
32A	32-lead, Thin (1.0 mm) Plastic Quad Flat Package (TQFP)			
28P3	28-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)			
32M1-A	32-pad, 5 x 5 x 1.0 body, Lead Pitch 0.50 mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)			

8. Packaging Information

8.1 32A

COMMON DIMENSIONS

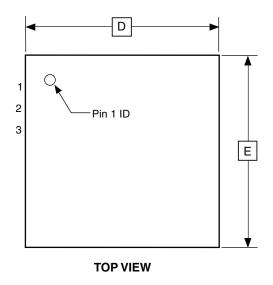
(Unit of Measure = mm)

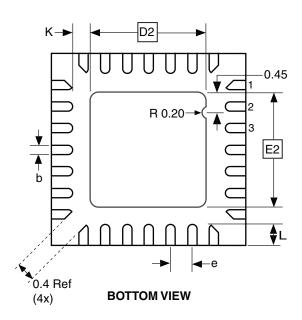
SYMBOL	MIN	NOM	MAX	NOTE
Α	_	_	1.20	
A1	0.05	_	0.15	
A2	0.95	1.00	1.05	
D	8.75	9.00	9.25	
D1	6.90	7.00	7.10	Note 2
E	8.75	9.00	9.25	
E1	6.90	7.00	7.10	Note 2
В	0.30	_	0.45	
С	0.09	_	0.20	
L	0.45	_	0.75	
е	0.80 TYP			

Notes:

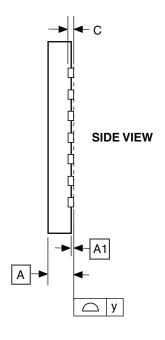
- 1. This package conforms to JEDEC reference MS-026, Variation ABA.
- Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum plastic body size dimensions including mold mismatch.
- 3. Lead coplanarity is 0.10 mm maximum.

10/5/2001


4Imei	2325 Orchard Parkway
AIIIEL	2325 Orchard Parkway San Jose, CA 95131


TITLE
32A, 32-lead, 7 x 7 mm Body Size, 1.0 mm Body Thickness,
0.8 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)

DRAWING NO.	REV.
32A	В



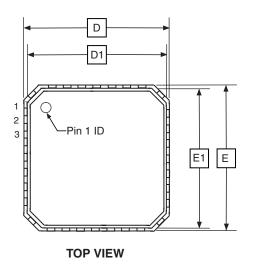
8.2 28M1

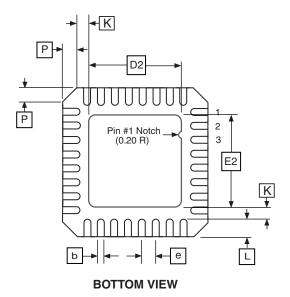
Note: The terminal #1 ID is a Laser-marked Feature.

COMMON DIMENSIONS (Unit of Measure = mm)

SYMBOL	MIN	NOM	MAX	NOTE
Α	0.80	0.90	1.00	
A1	0.00	0.02	0.05	
b	0.17	0.22	0.27	
С		0.20 REF		
D	3.95	4.00	4.05	
D2	2.35	2.40	2.45	
E	3.95	4.00	4.05	
E2	2.35	2.40	2.45	
е		0.45		
L	0.35	0.40	0.45	
у	0.00	_	0.08	
К	0.20	_	_	

10/24/08


Package Drawing Contact: packagedrawings@atmel.com


TITLE 28M1, 28-pad, 4 x 4 x 1.0 mm Body, Lead Pitch 0.45 mm, 2.4 x 2.4 mm Exposed Pad, Thermally Enhanced Plastic Very Thin Quad Flat No Lead Package (VQFN)

ľ	GPC	DRAWING NO.	REV.
	ZBV	28M1	В

8.3 32M1-A

SIDE VIEW

A3

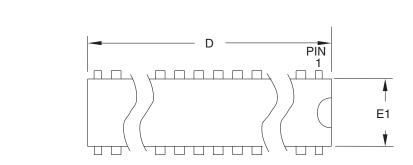
A1

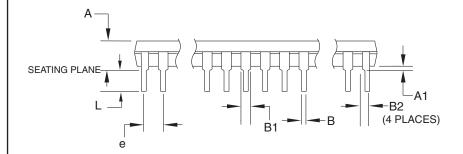
A 0.08 C

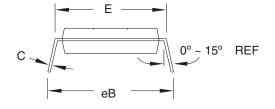
COMMON DIMENSIONS (Unit of Measure = mm)

SYMBOL	MIN	NOM	MAX	NOTE
Α	0.80	0.90	1.00	
A1	-	0.02	0.05	
A2	_	0.65	1.00	
A3		0.20 REF		
b	0.18	0.23	0.30	
D	4.90	5.00	5.10	
D1	4.70	4.75	4.80	
D2	2.95	3.10	3.25	
Е	4.90	5.00	5.10	
E1	4.70	4.75	4.80	
E2	2.95	3.10	3.25	
е		0.50 BSC		
L	0.30	0.40	0.50	
Р	_	_	0.60	
θ	_	_	12 ⁰	
K	0.20	_	_	

Note: JEDEC Standard MO-220, Fig. 2 (Anvil Singulation), VHHD-2.

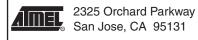

5/25/06


2325 Orchard Parkway San Jose, CA 95131 TITLE
32M1-A, 32-pad, 5 x 5 x 1.0 mm Body, Lead Pitch 0.50 mm, 3.10 mm Exposed Pad, Micro Lead Frame Package (MLF)


DRAWING NO. 8EV. 32M1-A

8.4 28P3

1. Dimensions D and E1 do not include mold Flash or Protrusion. Note: Mold Flash or Protrusion shall not exceed 0.25 mm (0.010").


COMMON DIMENSIONS

(Unit of Measure = mm)

SYMBOL	MIN	NOM	MAX	NOTE
Α	_	_	4.5724	
A1	0.508	_	_	
D	34.544	_	34.798	Note 1
Е	7.620	_	8.255	
E1	7.112	_	7.493	Note 1
В	0.381	_	0.533	
B1	1.143	_	1.397	
B2	0.762	_	1.143	
L	3.175	_	3.429	
С	0.203	_	0.356	
еВ	_	_	10.160	
е	2.540 TYP			

09/28/01

В

TITLE **28P3**, 28-lead (0.300"/7.62 mm Wide) Plastic Dual Inline Package (PDIP) DRAWING NO. REV. 28P3

9. Errata

9.1 Errata ATmega48PA

The revision letter in this section refers to the revision of the ATmega48PA device.

9.1.1 Rev. D

No known errata.

9.2 Errata ATmega88PA

The revision letter in this section refers to the revision of the ATmega88PA device.

9.2.1 Rev. F

No known errata.

9.3 Errata ATmega168PA

The revision letter in this section refers to the revision of the ATmega168PA device.

9.3.1 Rev E

No known errata.

9.4 Errata ATmega328P

The revision letter in this section refers to the revision of the ATmega328P device.

9.4.1 Rev D

No known errata.

9.4.2 Rev C

Not sampled.

9.4.3 Rev B

Unstable 32 kHz Oscillator

1. Unstable 32 kHz Oscillator

The 32 kHz oscillator does not work as system clock.

The 32 kHz oscillator used as asynchronous timer is inaccurate.

Problem Fix/ Workaround

None

9.4.4 Rev A

Unstable 32 kHz Oscillator

1. Unstable 32 kHz Oscillator

The 32 kHz oscillator does not work as system clock.

The 32 kHz oscillator used as asynchronous timer is inaccurate.

Problem Fix/ Workaround

None

10. Datasheet Revision History

Please note that the referring page numbers in this section are referred to this document. The referring revision in this section are referring to the document revision.

10.1 Rev. 8161D - 10/09

1. Inserted Table 8-8 on page 32, Capacitance for Low-frequency Crystal Oscillator.

10.2 Rev. 8161C - 05/09

- 1. Updated "Features" on page 1 for ATmega48PA/88PA/168PA/328P.
- 2. Updated "Overview" on page 5 included the Table 2-1 on page 6.
- 3. Updated "AVR Memories" on page 16 included "Register Description" on page 21 and inserted Figure 7-1 on page 17.
- 4. Updated "Register Description" on page 44.
- 5. Updated "System Control and Reset" on page 46.
- 6. Updated "Interrupts" on page 57.
- 7. Updated "External Interrupts" on page 70.
- 8. Updated "Boot Loader Support Read-While-Write Self-Programming, ATmega88PA, ATmega168PA and ATmega328P" on page 277.
- 9. Inserted "ATmega168PA DC Characteristics" on page 315.
- 10. Inserted "ATmega328P DC Characteristics" on page 316.
- 11. Inserted "ATmega168PA Typical Characteristics" on page 375.
- 12. Inserted "ATmega328P Typical Characteristics" on page 399.
- 13. Inserted Ordering Information for "ATmega168PA" on page 432.
- 14. Inserted Ordering Information for "ATmega328P" on page 433.
- 15. Inserted "Errata ATmega328P" on page 438.
- 16. Editing updates.

10.3 Rev. 8161B - 01/09

- 1. Updated "Features" on page 1 for ATmega48PA and updated the book accordingly.
- 2. Updated "Overview" on page 5 included the Table 2-1 on page 6.
- 3. Updated "AVR Memories" on page 16 included "Register Description" on page 21 and inserted Figure 7-1 on page 17.
- 4. Updated "Register Description" on page 44.
- 5. Updated "System Control and Reset" on page 46.
- 6. Updated "Interrupts" on page 57.

- 7. Updated "External Interrupts" on page 70.
- 8. Inserted Typical characteristics for "ATmega48PA Typical Characteristics" on page 327.
- Updated figure names in Typical characteristics for "ATmega88PA Typical Characteristics" on page 351.
- 10. Inserted "ATmega48PA DC Characteristics" on page 314.
- 11. Updated Table 28-1 on page 317 by removing the footnote from Vcc/User calibration
- 12. Updated Table 28-7 on page 323 by removing Max value (2.5 LSB) from Absolute accuracy, V_{BEF} = 4V, V_{CC} = 4V, ADC clock = 200 kHz.
- 13. Inserted Ordering Information for "ATmega48PA" on page 430.

10.4 Rev. 8161A - 11/08

- 1. Initial revision (Based on the ATmega48P/88P/168P/328P datasheet 8025F-AVR-08/08).
- 2. Changes done compared to ATmega48P/88P/168P/328P datasheet 8025F-AVR-08/08:
 - Updated "DC Characteristics" on page 313 with new typical values for I_{CC}.
 - Updated "Speed Grades" on page 316.
 - New graphics in "Typical Characteristics" on page 326.
 - New "Ordering Information" on page 430.

Headquarters

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131 USA

Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

International

Atmel Asia

Unit 1-5 & 16, 19/F BEA Tower, Millennium City 5 418 Kwun Tong Road Kwun Tong, Kowloon Hong Kong

Tel: (852) 2245-6100 Fax: (852) 2722-1369 Atmel Europe

Le Krebs 8, Rue Jean-Pierre Timbaud BP 309 78054 Saint-Quentin-en-

Yvelines Cedex France

Tel: (33) 1-30-60-70-00 Fax: (33) 1-30-60-71-11

Atmel Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033

Japan

Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Product Contact

Web Site

www.atmel.com

Technical Support

avr@atmel.com

Sales Contact

www.atmel.com/contacts

Literature Requests

www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2009 Atmel Corporation. All rights reserved. Atmel logo and combinations thereof, AVR® and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Atmel:

ATMEGA48PA-MU ATMEGA48PA-AU ATMEGA48PA-PU ATMEGA48PA-AUR ATMEGA48PA-MMHR

ATMEGA48PA-MUR ATMEGA48PA-MMH ATMEGA48PA-CCUR ATMEGA48PA-AN ATMEGA48PA-ANR

ATMEGA48PA-MMNR ATMEGA48PA-MN ATMEGA48PA-MNR ATMEGA48PA-PN ATMEGA48PA-15MZ

ATMEGA48PA-15AZ