
ACT 4487 DUAL TRANSCEIVER FOR MIL-STD-1553/1760

Features

- +5 / ±15 Volt Supply Operation
- Low Power Dissipation
- Small Size & Light Weight
- Dual Transceivers Saves Space & Cost
- Outstanding MIL-STD-1553 performance
- Radiation Hard Dielectric Isolation Monolithic Construction for Severe Environments
- Superior High Frequency Line Transient and Input Ripple Rejection
- Input and Output TTL Compatible Design
- Processed and Screened to MIL-STD-883 Specs
- MIL-PRF-38534 Compliant Devices Available
- DESC SMD (Standard Military Drawing)

General Description

Aeroflex The Circuit Technology ACT 4487 is a next generation monolithic transceiver design which provides full compliance to MIL-STD-1553A/B and 1760 requirements in a small package with low power consumption.

The ACT 4487 series performs the front-end analog function of inputting and outputting data through a transformer to the MIL-STD-1553 data bus.

Design of this transceiver reflects particular attention to active filter performance. This results in low bit and word error rate with superior waveform purity and minimal zero crossover distortion. Efficient transmitter electrical and thermal design provides low internal power dissipation and heat rise at high as well as low duty cycles.

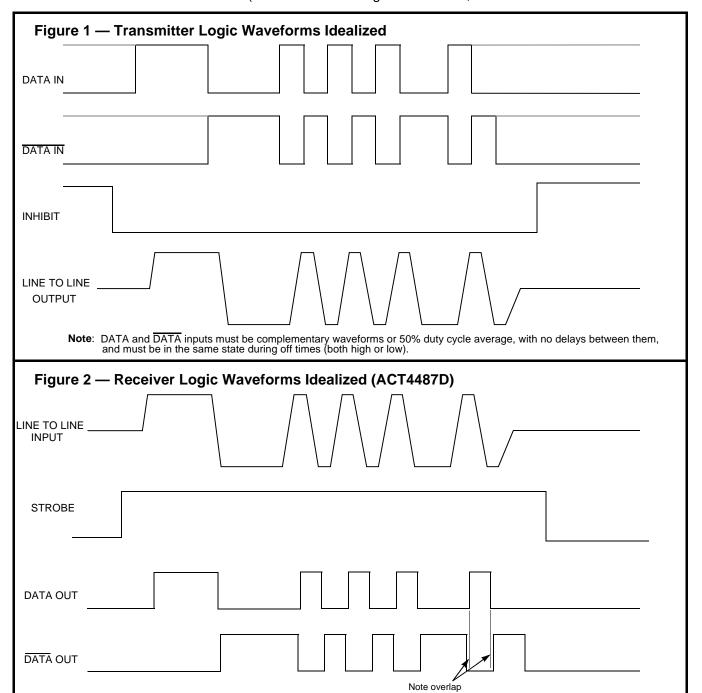
Each channel of the dual transceiver is completely separate from the other and fully independent. This includes power leads as well as signal lines. Hence, each channel may be connected to a different data bus with no interaction.

Transmitter:

The Transmitter section accepts bi-phase TTL data at the input and when coupled to the data bus with a 1.4:1 ratio transformer, isolated on the data bus side with two 52.5 Ohm fault isolation resistors, and loaded by two 70 Ohm

terminations, the data bus signal is typically 7.5 Volts P-P at point A (See Figure 5). When both DATA and DATA inputs are held low or high, transmitter output becomes a high impedance and is "removed" from the line. In addition, overriding "INHIBIT" input provides for the removal of the transmitter output from the line. A logic "1" signal applied to the "INHIBIT" takes priority over the condition of the data inputs and disables the transmitter (See

Transmitter Logic Waveform, Figure 1). The Transmitter may be safely operated for an indefinite period with the bus (point A) short circuited at 100% duty cycle.


Receiver:

The Receiver section accepts bi-phase differential data at the input and produces two TTL signals at the output. The outputs are DATA and DATA, and represent positive and negative excursions of the input beyond a pre-determined threshold (See Receiver Logic Waveform,

Figure 2).

The pre-set internal thresholds will detect data bus signals, point A Figure 5, exceeding 1.20 Volts P-P and reject signals less than 0.6 Volts P-P when used with a transformer (See Figure 5 for transformer data and typical connection).

A low level at the RX Strobe input inhibits the DATA and DATA outputs. If unused, a 2K pull-up to +5 Volts is recommended.

Absolute Maximum Ratings

Operating case temperature	-55°C to +125°C
Storage case temperature	-65°C to +150°C
Power supply voltage Vcc VEE VL	-0.3 V to +18 V +0.3 V to-18 V -0.3 V to +7.0 V
Logic input voltage	-0.3 V to +5.5 V
Receiver differential input	±40 VP-P
Receiver input voltage (common mode)	±10 V
Driver peak output current	300 mA
Total package power dissipation over the full operating case temperature rise	2.5 Watts (Note: Normal operation conditions require one transceiver on and the other off)
Maximum junction to case temperature	10°C
Thermal resistance – junction to case	4°C/W

Electrical Characteristics — Driver Section

Input Characteristics, TX DATA IN or TX DATA IN (Notes 2 & 3 apply)

Parameter	Condition	Symbol	Min	Тур	Max	Unit
"0" Input Current	V _{IN} = 0.4 V	I _{ILD}		-0.1	-0.2	mA
"1" Input Current	V _{IN} = 2.7 V	I _{IHD}		1	40	μA
"0" Input Voltage		V_{IHD}			0.7	V
"1" Input Voltage		V_{IHD}	2.0			V
Inhibit Characteristics						
"0" Input Current	V _{IN} = 0.4 V	I _{ILI}		-0.1	-0.2	mA
"1" Input Current	V _{IN} =2.7V	I _{IHI}		1.0	40	μΑ
"0" Input Voltage		V _{ILI}			0.7	V
"1" Input Voltage		V _{IHI}	2.0			V
Delay from TX inhibit, (0→1) to inhibited output	From mid pt inhibit to	t _{DXOFF}		175	225	nS
Delay from TX inhibit, (1→0) to active output	±1.2V pt B, See Figure 5	t _{DXON}		90	150	nS
Differential output noise, inhibit mode		V _{NOI}		2	10	mV _{P-P}
Differential output impedance (inhibited) Note 1 See Figure 5	Point B	Z _{OI}	2K			Ω
, and the second	Point C	Z _{OI}	1K			Ω
Output Characteristics						
Differential output level, See Figure 5 See Figure 5	Point A	Vo	6	7.5	9	V _{P-P}
Rise and fall times(10% to 90% at pt A output) See Figure 5	Point A	t _r	100	160	300	nS
Output offset, Figure 3, 2.5µS after midpoint crossing of the parity bit of the last word of a 660µS message See Figure 5	Point A	Vos			± 90	mV peak
Delay from 50% point of TX DATA or TX DATA input to zero crossing of differential signal. See Fig 5	Point A	t _{DXT}		100	200	nS

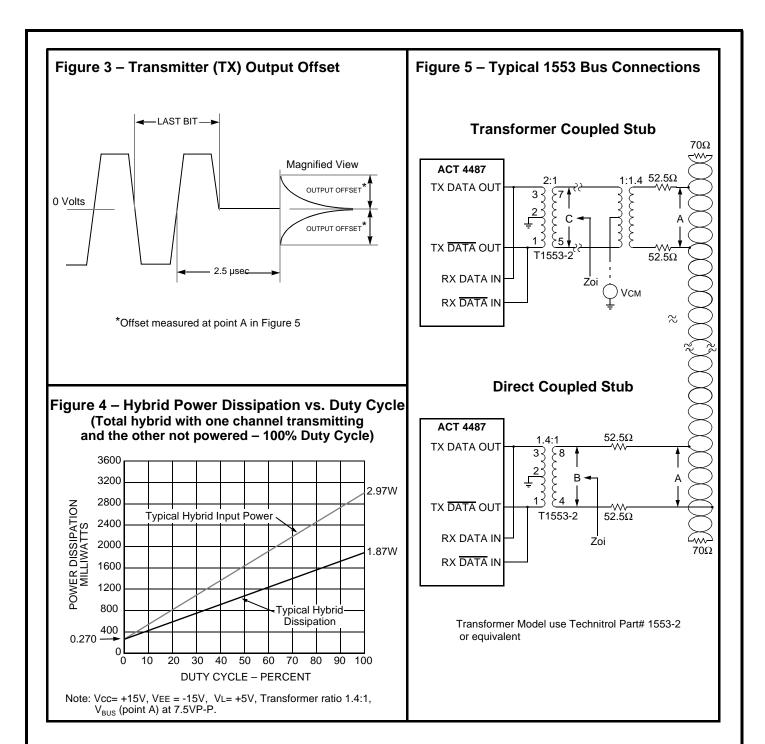
Electrical Characteristics — Receiver Section

Parameter	Condition	Symbol	Min	Тур	Max	Unit
Differential Receiver Input Voltage Range (See Figure 5, Point B)	TXFMR 1.4:1	V_{IDR}			40	V _{P-P}
Common Mode Rejection Ratio (Note 3)		CMRR	45			dB
"1" State - Rx Data or Rx Data Output	I _{OH} = -0.4 mA	V_{OH}	2.5	3.7		V
"0" State - Rx Data or Rx Data Output	I _{OI} = 4 mA	V_{OL}		0.35	0.5	V
Delay (average) from Differential Input Zero Crossings to RX DATA and RX DATA Output 50% points		^t dxt		270	400	nS
Input Threshold Voltage (referred to the bus)	100KHz-1MHz	V_{TH}	0.60	0.75	1.20	V_{P-P}

Strobe Characteristics (Logic "0" Inhibits Output)

"0" Input Current	V _S =0.4V	I _{IL}		-0.1	-0.2	mA
"1" Input Current	V _S =2.7V	I _{IH}		1	+40	μΑ
"0" Input Voltage		V_{IL}			0.7	V
"1" Input Voltage		V_{IH}	2.0			V
Strobe Delay (Turn-on or Turn-off)		t _{SD}		50	100	nS

Power Data

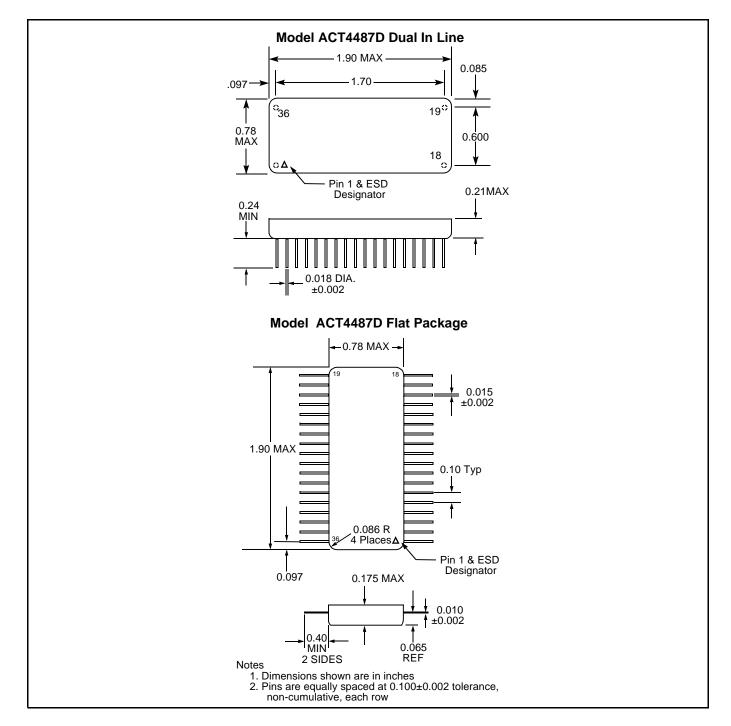

Power Supply Currents - Per Channel - See Figure 4

	3	_	_	_	_	_
Transmitter Standby		I _{CC} I _{EE}		0 12	1 16	
Transmitter Standby		IL		18	30	
		I _{CC}		45	50	
25% duty cycle		I _{EE}		12	20	
		IL		18	30	mA
		I _{CC}		90	100	
50% duty cycle		I _{EE}		12	20	
		ΙL		18	30	
		I _{CC}		180	200	
100% duty cycle		I _{EE}		12	20	
		IL.		18	30	

Power Supply Voltages

±15V Operating Power Supply Voltage Range				+15.75 -15.75	
+5V Operating Power Supply Voltage Range)	VL	+4.50	+5.00	+5.50	V

- Note 1. Power on or off, measured from 75KHz to 1MHz at point A and transformer self impedance of $3K\Omega$ minimum at 1MHz.
- Note 2: Power Supplies: ±15 Volts ±0.75 V & +5 Volts ±0.5 V, bypassed by 10 µF (Tantalum recommended) Capacitor minimum. All measurements & specifications apply over the temperature range of -55°C to +125°C (case temperature) unless otherwise specified. Note 3: When measured as shown per Figure 5 with \pm 10 Volt peak, line to ground, DC to 2MHz Note 4: Typical power is measured with V_{BUS} at point A = 7.5 V_{P-P}


Configurations and Ordering Information

ACT Model # / Ordering Part #	Case Style	DESC Number	Rx Standby
ACT 4487-D	DIP	5962-8757910X_	Normally Low
ACT 4487-DI	DIP	5962-TBA	Normally High
ACT 4487-DF	FP 5962-8757910Y_ Norr		Normally Low
ACT 4487-DFI	FP	5962-TBA	Normally High

Figure 6 – Lead Numbers & Functions

	ACT4487D				
Pin #	Function	Channel			
1	TX DATA OUT	А			
2	TX DATA OUT	Α			
3	GROUND 1	Α			
4	NC				
5	RX DATA OUT	Α			
6	STROBE	Α			
7	GROUND 2	Α			
8	RX DATA OUT	Α			
9	CASE				
10	TX DATA OUT	В			
11	TX DATA OUT	В			
12	GROUND 1	В			
13	NC				
14	RX DATA OUT	В			
15	STROBE	В			
16	GROUND 2	В			
17	RX DATA OUT	В			
18	NC				
19	Vcc	В			
20	RX DATA IN	В			
21	RX DATA IN	В			
22	GROUND 3	В			
23	VEE	В			
24	+5 V (VL)	В			
25	INHIBIT	В			
26	TX DATA IN	В			
27	TX DATA IN	В			
28	Vcc	Α			
29	RX DATA IN	Α			
30	RX DATA IN	А			
31	GROUND 3	А			
32	VEE	Α			
33	+5 V (VL)	А			
34	INHIBIT	Α			
35	TX DATA IN	Α			
36	TX DATA IN	А			

Aeroflex Circuit Technology 35 South Service Road Plainview New York 11830 www.aeroflex.com/act1.htm Telephone: (516) 694-6700 FAX: (516) 694-6715 Toll Free Inquiries: (800) THE-1553 E-Mail: sales-act@aeroflex.com