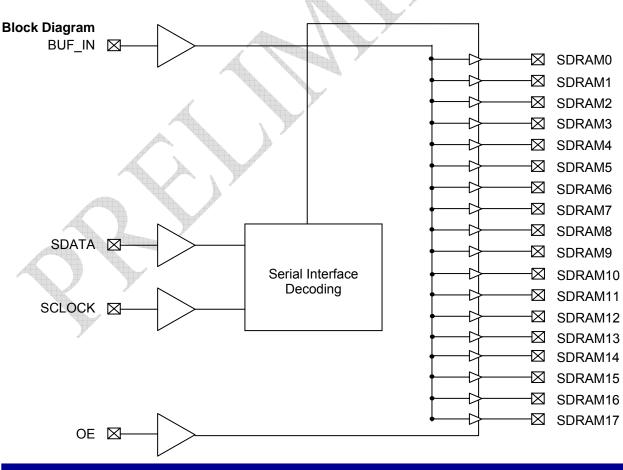
June 2005

rev 0.3

18 Output, 3.3V SDRAM Buffer for Desktop PCs with 3 DIMMs

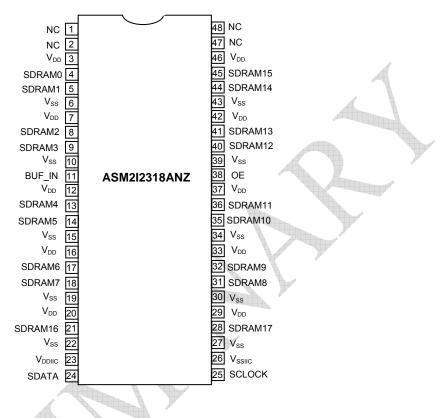

Features

- One input to 18 output Buffer/Driver
- Supports up to four SDRAM DIMMs
- Two additional outputs for feedback
- Serial interface for individual output control
- Low skew outputs (< 250 pS)
- Up to 133 MHz operation
- Dedicated OE pin for testing
- Space-saving 48 Pin SSOP package
- 3.3V operation

Functional Description

The ASM2I2318ANZ is a 3.3V buffer designed to distribute high-speed clocks in PC applications. The part has 18 outputs, 16 of which can be used to drive up to four SDRAM DIMMs, and the remaining can be used for external feedback to a PLL. The device operates at 3.3V and outputs can run up to 133MHz, thus making it Pentium II®* compatible with processors. The ASM2I2318ANZ can be used in conjunction with the clock synthesizer for a complete Pentium II motherboard solution. The ASM2I2318ANZ also includes a serial interface which can enable or disable each output clock. On power-up, all output clocks are enabled (internal pull up). A separate Output Enable pin facilitates testing on ATE.

*Pentium is a registered trademark of Intel Corporation.


Alliance Semiconductor

2575, Augustine Drive • Santa Clara, CA • Tel: 408.855.4900 • Fax: 408.855.4999 • www.alsc.com

Pin Configuration

48-Pin SSOP Package -- Top View

Pin Description

Pins	Name	Туре	Description
3, 7, 12, 16, 20, 29, 33, 37, 42, 46	V _{DD}	Р	3.3V Digital voltage supply
6, 10, 15, 19, 22, 27, 30, 34, 39, 43	V _{SS}	Р	Ground
23	VDDIIC	Р	Serial interface voltage supply
26	V _{SSIIC}	P	Ground for serial interface
11	BUF_IN	Ι	Input clock. 5V tolerant
38	OE	I	Output Enable (active HIGH), Three-state outputs when low ¹
24	SDATA	I/O	Serial data input ¹ . 5V tolerant
25	SCLK	I	Serial clock input ¹ . 5V tolerant
4, 5, 8, 9	SDRAM [0–3]	0	SDRAM byte 0 clock outputs
13, 14, 17, 18	SDRAM [4–7]	0	SDRAM byte 1 clock outputs
31, 32, 35, 36	SDRAM [8–11]	0	SDRAM byte 2 clock outputs
40, 41, 44, 45	SDRAM [12–15]	0	SDRAM byte 3 clock outputs
21, 28	SDRAM [16–17]	0	SDRAM clock outputs usable for feedback
NC	1, 2, 47, 48	-	Reserved for future modifications, do not connect in system

Note: 1. Internal pull-up resistor to VDD (value > 100 KOhms)

Device Functionality

OE	SDRAM [0-17]
0	Hi-Z
1	1 x BUF_IN

Serial Configuration Map

• The Serial bits will be read by the clock driver in the following order:

Byte 0 - Bits 7, 6, 5, 4, 3, 2, 1, 0

Byte 1 - Bits 7, 6, 5, 4, 3, 2, 1, 0

Byte N - Bits 7, 6, 5, 4, 3, 2, 1, 0

- Reserved bits should be programmed to "0" or "1".
- Serial interface address for the ASM2I2318ANZ is:

A6	A5	A4	A3	A2	A1	A0	R/W
1	1	0	1	0	0	1	

Byte 0:SDRAM Active/Inactive Register (1 = Enable, 0 = Disable), Default = Enable

Bit	Pin #	Description
Bit 7	18	SDRAM7 (Active/Inactive)
Bit 6	17	SDRAM6 (Active/Inactive)
Bit 5	14	SDRAM5 (Active/Inactive)
Bit 4	13	SDRAM4 (Active/Inactive)
Bit 3	9	SDRAM3 (Active/Inactive)
Bit 2	8	SDRAM2 (Active/Inactive)
Bit 1	5	SDRAM1 (Active/Inactive)
Bit 0	4	SDRAM0 (Active/Inactive)

Byte 1: SDRAM Active/Inactive Register (1 = Enable, 0 = Disable), Default = Enable

Bit	Pin #	Description
Bit 7	45	SDRAM15 (Active/Inactive)
Bit 6	44	SDRAM14 (Active/Inactive)
Bit 5	41	SDRAM13 (Active/Inactive)
Bit 4	40	SDRAM12 (Active/Inactive)
Bit 3	36	SDRAM11 (Active/Inactive)
Bit 2	35	SDRAM10 (Active/Inactive)
Bit 1	32	SDRAM9 (Active/Inactive)
Bit 0	31	SDRAM8 (Active/Inactive)

Byte 2: SDRAM Active/Inactive Register (1 = Enable, 0 = Disable), Default = Enable

Bit	Pin #	Description
Bit 7	28	SDRAM17 (Active/Inactive)
Bit 6	21	SDRAM16 (Active/Inactive)
Bit 5		Reserved
Bit 4	7	Reserved
Bit 3		Reserved
Bit 2		Reserved
Bit 1		Reserved
Bit 0		Reserved

Note 1 : When the value of bit in these bytes is high, the output is enabled. When the value of the bit is low, the output is forced to low state. The default value of all the bits is high after chip is powered up.

IIC Byte Flow

Byte	Description
1	IIC Address
2	Command (dummy value, ignored)
3	Byte Count (dummy value, ignored)
4	IIC Data Byte 0
5	IIC Data Byte 1
6	IIC Data Byte 2

Absolute Maximum Ratings

Symbol	Parameter	Rating	Unit					
V _{DD}	Supply Voltage to Ground Potential	-0.5 to +7.0	V					
V _{IN}	DC Input Voltage (Except BUF_IN)	-0.5 to VDD + 0.5	V					
V _{BUFIN}	DC Input Voltage (BUF_IN)	-0.5 to +7.0	V					
T _{STG}	Storage Temperature	-65 to +150	°C					
TJ	Junction Temperature	150	°C					
T _{DV}	Static Discharge Voltage	2	КV					
۰Dv	(As per JEDEC STD 22- A114-B)							
	Note: These are stress ratings only and are not implied for functional use. Exposure to absolute maximum ratings for prolonged periods of time may affect device reliability.							

Operating Conditions¹

Parameter	Description	Min	Max	Unit
V _{DD} V _{DDIIC}	Supply Voltage	3.135	3.465	V
T _A	Operating Temperature (Ambient Temperature)	0	70	°C
CL	Load Capacitance	20	30	pF
C _{IN}	Input Capacitance		7	pF
t _{PU}	Power-up time for all V_{DD} 's to reach minimum specified voltage (power ramps must be monotonic)	0.05	50	mS

Note: 1. Electrical parameters are guaranteed under the operating conditions specified.

18 Output, 3.3V SDRAM Buffer for Desktop PCs with 3 DIMMs 4 of 13

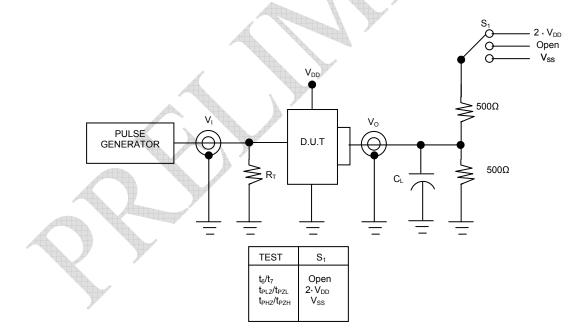
Electrical Characteristics

(Test condition: All parameters values are valid within the Operating range, unless otherwise stated)

Parameter	Description	Test Conditions	Min	Тур	Max	Unit
VIL	Input LOW Voltage	For all pins except serial interface pins			0.8	V
VILiic	Input LOW Voltage	For serial pins only			0.7	V
VIH	Input HIGH Voltage		2.0			V
V _{OL}	Output LOW Voltage ¹	I _{OL} = 25 mA			0.4	V
V _{OH}	Output HIGH Voltage ¹	I _{OH} = –36 mA	2.4			V
Icc	Quiescent Supply Current	V_{DD} = 3.465V, V_i = V_{DD} or GND, I_O =0		50	100	μA
I _{OZ}	High Impedance Output Current	V_{DD} = 3.465V, V_i = V_{DD} or GND			±10	μA
I _{OFF}	Off-State Current (for SCL ,SDATA)	V_{DD} = 0V, V _i = 0V or 5.5V			50	μA
ΔI_{CC}	Change in Supply Current	V_{DD} = 3.135V to 3.465V One Input at V _{DD} -0.6, All other Inputs at V _{DD} or GND	X		500	μA
li	Input Leakage	V _{DD} = 3.465V or GND (Applicable to all Input Pins)	-5		+5	μA
I _{DD}	Supply Current ¹	Unloaded outputs, 133 MHz	Y		150	mA
I _{DD}	Supply Current ¹	Loaded outputs, 30pF,133 MHz			400	mA
I _{DD}	Supply Current ¹	Unloaded outputs, 100 MHz	All and a second se		110	mA
I _{DD}	Supply Current ¹	Loaded outputs, 30pF, 100 MHz			300	mA
I _{DD}	Supply Current ¹	Unloaded outputs, 66.67 MHz			80	mA
I _{DD}	Supply Current ¹	Loaded outputs, 30pF, 66.67 MHz			200	mA
I _{DDS}	Supply Current	BUF_IN=V _{DD} or V _{SS,} all other inputs at V _{DD}			500	μA

Note: 1. Parameter is guaranteed by design and characterization. Not 100% tested in production.

18 Output, 3.3V SDRAM Buffer for Desktop PCs with 3 DIMMs5 of 13


Switching Characteristics¹

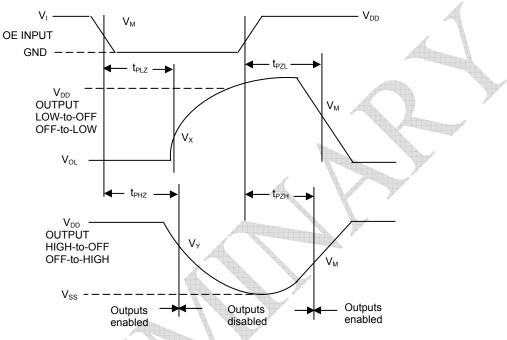
Parameter	Name	Test Conditions	Min	Тур	Max	Unit
Fin	Maximum Operating Frequency		-	-	133	MHz
t _D	Duty cycle 2,3 = $t_2 \div t_1$	Measured at 1.5V	45.0	50.0	55.0	%
t ₃	Rising Edge Rate ³	Measured between 0.4V and 2.4V	1	2	4	V/nS
t4	Falling Edge Rate ³	Measured between 2.4V and 0.4V	1	2	4	V/nS
t ₅	Output to Output Skew ³	All outputs equally loaded		150	225	pS
t ₆	SDRAM Buffer LH Prop. Delay ³	Input edge greater than 1 V/nS	1	2.7	3.5	nS
t ₇	SDRAM Buffer HL Prop. Delay ³	Input edge greater than 1 V/nS	1	2.7	3.5	nS
$t_{\text{PLZ},} t_{\text{PHZ}}$	SDRAM Buffer Enable Delay ³	Input edge greater than 1 V/nS	1	3	5	nS
$t_{\text{PZL},} t_{\text{PZH}}$	SDRAM Buffer Disable Delay ³	Input edge greater than 1 V/nS	1	3	5	nS
4	Rise Time for SDATA	C _L = 10pF	6			2
t _r	(Refer Test Circuit for IIC) Refer figure no.3	C _L = 400pF) and the second	250	nS
+	Fall Time for SDATA	C _L = 10pF	20			nS
t _f	(Refer Test Circuit for IIC) Refer figure no.3	C _L = 400pF			250	113

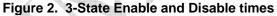
Note: 1. All parameters specified with loaded outputs. 2. Duty cycle of input clock is 50%. Rising and falling edge rate is greater than 1V/nS

3. Parameter is guaranteed by design and characterization. Not 100% tested in production.

Test Circuit for SDRAM Enable and Disable Times

June 2005


rev 0.3


SDRAM Enable and Disable Times

 $V_{M} = 1.5V$

 $V_X = V_{OL} + 0.3V$ $V_Y = V_{OH} - 0.3V$

 $V_{\text{OH}} \, \text{and} \, \, V_{\text{OL}}$ are the typical $\, \, \text{Output} \, \, \text{Voltage drop} \,$ that occur with the output load

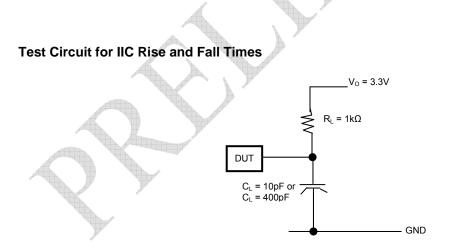
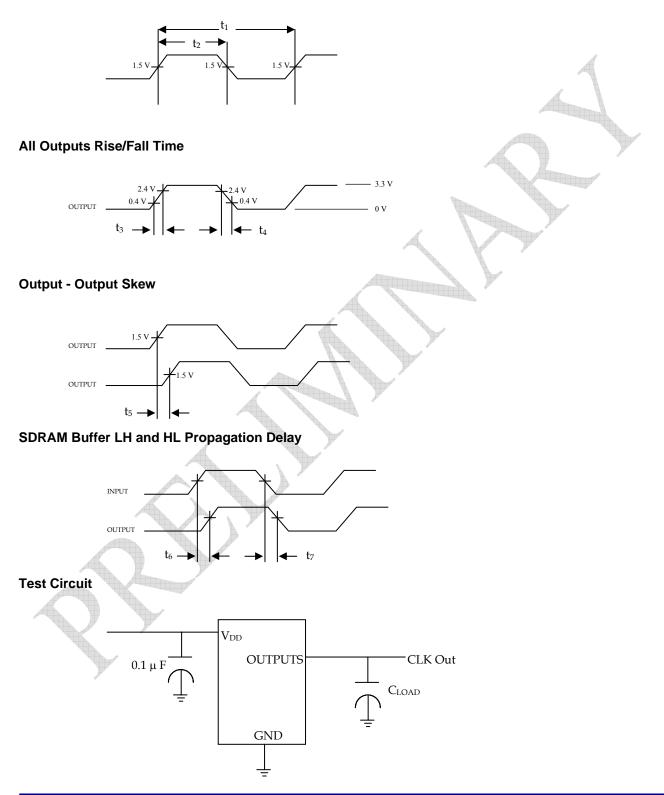
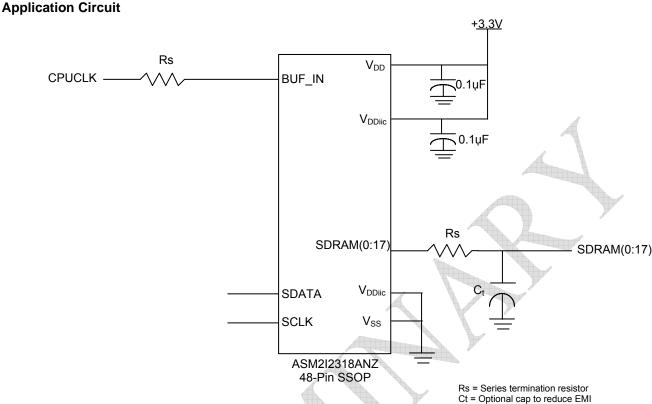


Figure 3. Test Circuit for IIC


18 Output, 3.3V SDRAM Buffer for Desktop PCs with 3 DIMMs 7 of 13

June 2005


rev 0.3

Switching Waveforms

Duty Cycle Timing

Summary

- Surface mount, low-ESR, ceramic capacitors should be used for filtering. Typically, these capacitors have a value of 0.1µF. In some cases, smaller value capacitors may be required.
- The value of the series terminating resistor satisfies the following equation, where Rtrace is the loaded characteristic impedance of the trace, Rout is the output impedance of the buffer (typically 25Ω), and Rseries is the series terminating resistor.

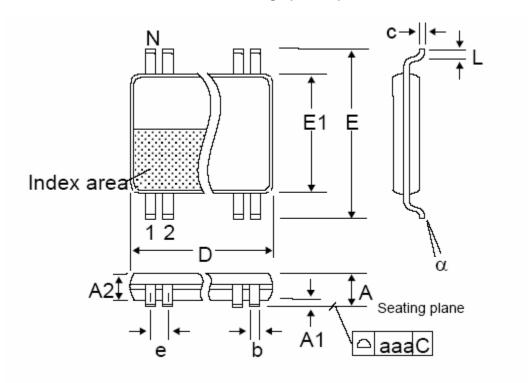
Rseries > Rtrace - Rout

- Footprints must be laid out for optional EMI-reducing capacitors, which should be placed as close to the terminating resistor as is physically possible. Typical values of these capacitors range from 4.7pF to 22pF.
- A Ferrite Bead may be used to isolate the Board V_{DD} from the clock generator V_{DD} island. Ensure that the Ferrite Bead offers greater than 50Ω impedance at the clock frequency, under loaded DC conditions.
- If a Ferrite Bead is used, a 10µF–22µF tantalum bypass capacitor should be placed close to the Ferrite Bead. This capacitor prevents power supply droop during current surges.

IIC Serial Interface Information

The information in this section assumes familiarity with IIC programming.

How to program ASM2I2318ANZ through IIC:

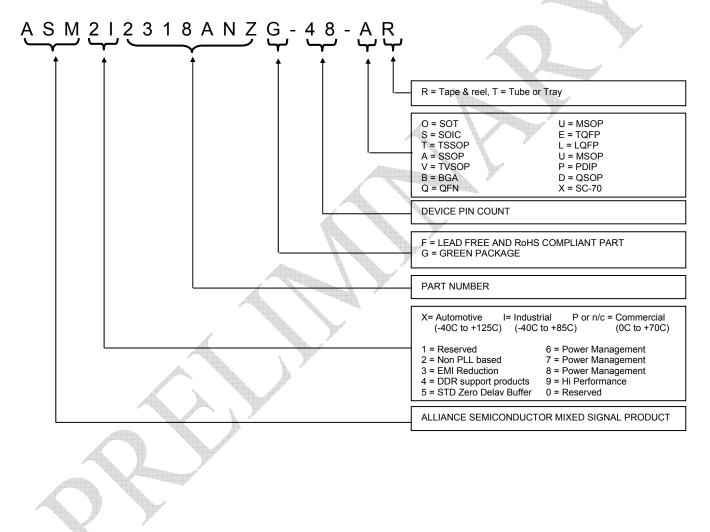

- Master (host) sends a start bit.
- Master (host) sends the write address D3 (H).
- ASM2I2318ANZ device will acknowledge.
- Master (host) sends the Command Byte.
- ASM2I2318ANZ device will acknowledge the Command Byte.
- Master (host) sends a Byte count
- ASM2I2318ANZ device will acknowledge the Byte count.
- Master (host) sends the Byte 0
- ASM2I2318ANZ device will acknowledge Byte 0
- Master (host) sends the Byte 1
- ASM2I2318ANZ device will acknowledge Byte 1
- Master (host) sends the Byte 2
- ASM2I2318ANZ device will acknowledge Byte 2
- Master (host) sends a Stop bit.

Controller (Host)	ASM2I2318ANZ (slave/receiver)
Start Bit	
Slave Address D3(H)	
	ACK
Command Byte	
	ACK
Byte count	
	ACK
Byte 0	
$\langle \langle \rangle$	ACK
Byte 1	
	ACK
Byte 2	
	ACK
Stop Bit	

Package Information

48L SSOP Package (300 mil)

1


			Dimensions					
	Symbol	Inches		Millimeters				
		Min	Max	Min	Max			
	Α	0.095	0.110	2.413	2.794			
	A1	0.008	0.016	0.203	0.406			
¥	В	0.008	0.012	0.203	0.305			
1	C	0.005	0.009	0.127	0.228			
	D	0.620	0.630	15.75	16.002			
	E	0.291	0.299	7.39	7.59			
	Н	0.395	0.420	10.033	10.67			
	L	0.020	0.040	0.508	1.016			
	е	0.025 BSC		0.635 BSC				
	α	0°	8°	0°	8°			

18 Output, 3.3V SDRAM Buffer for Desktop PCs with 3 DIMMs 11 of 13

Ordering Information

Ordering Code	Marking	Package Type	Operating Range
ASM2I2318ANZ-48-AT	2I2318ANZ	48 Pin SSOP, Tube	Industrial
ASM2I2318ANZ-48-AR	2I2318ANZ	48 Pin SSOP, Tape and Reel	Industrial
ASM2I2318AGNZ-48-AT	2I2318AGNZ	48 Pin SSOP, Tube, Green	Industrial
ASM2I2318AGNZ-48-AR	2I2318AGNZ	48 Pin SSOP, Tape and Reel, Green	Industrial

Device Ordering Information

Licensed under US patent #5,488,627, #6,646,463 and #5,631,920.

Alliance Semiconductor Corporation 2575, Augustine Drive, Santa Clara, CA 95054 Tel# 408-855-4900 Fax: 408-855-4999 www.alsc.com Copyright © Alliance Semiconductor All Rights Reserved Part Number: ASM2I2318ANZ Document Version: 0.3

Note: This product utilizes US Patent # 6,646,463 Impedance Emulator Patent issued to Alliance Semiconductor, dated 11-11-2003

© Copyright 2003 Alliance Semiconductor Corporation. All rights reserved. Our three-point logo, our name and Intelliwatt are trademarks or registered trademarks of Alliance. All other brand and product names may be the trademarks of their respective companies. Alliance reserves the right to make changes to this document and its products at any time without notice. Alliance assumes no responsibility for any errors that may appear in this document. The data contained herein represents Alliance's best data and/or estimates at the time of issuance. Alliance reserves the right to change or correct this data at any time, without notice. If the product described herein is under development, significant changes to these specifications are possible. The information in this product data sheet is intended to be general descriptive information for potential customers and users, and is not intended to operate as, or provide, any guarantee or warrantee to any user or customer. Alliance does not assume any responsibility or liability arising out of the application or use of any product described herein, and disclaims any express or implied warranties related to the sale and/or use of Alliance products including liability or warranties related to fitness for a particular purpose, merchantability, or infringement of any intellectual property rights, except as express agreed to in Alliance's Terms and Conditions of Sale (which are available from Alliance). All sales of Alliance products are made exclusively according to Alliance's Terms and Conditions of Sale. The purchase of products from Alliance does not convey a license under any patent rights, copyrights; mask works rights, trademarks, or any other intellectual property rights of Alliance or third parties. Alliance does not authorize its products for use as critical components in life-supporting systems where a malfunction or failure may reasonably be expected to result in significant injury to the user, and the inclusion of Alliance products in such life-supporting systems implies that the manufacturer assumes all risk of such use and agrees to indemnify Alliance against all claims arising from such use.