AN5693K

Luminance, chroma and sync. signals processing IC (with built-in $\mathrm{I}^{2} \mathrm{C}$ bus interface) for PAL/NTSC color-TV

Overview

The AN5693K is an IC that processes PAL-and NTSC-compatible video,chroma, RGB and sync. signals.

Features

- Built-in $\mathrm{I}^{2} \mathrm{C}$-bus control interface.
- SECAM-compatible together with the AN5637 SECAM signal processing IC.

Applications

- TV (Multi-system compatible)

Block Diagram

Pin Descriptions

Pin No.	Description	Pin No.	Description
1	(R-Y)Clamp	27	N.C.
2	(G-Y)Clamp	28	Video Level Adjust Input
3	(B-Y)Clamp	29	Video Level Adjust Output
4	Killer Filter	30	Black Level Det/Blank Off SW
5	Killer Output	31	Y Input
6	Chroma APC Filter	32	Ver. Sync. Clamp
7	Chroma VCO 4.43 MHz	33	Ver. Sync. Input
8	Chroma VCO 3.58 MHz	34	Hor. Sync. Input
9	Spot Killer	35	VCC3(Chroma/Jungle/DAC)
10	Y Input(Fast Blanking)	36	Chroma Input/Black Exp. Start
11	External R Input	37	GND(Video/Chroma/Jungle)
12	External G Input	38	FBP Input
13	External B Input	39	VCC2(Hor. Stability Supply)
14	V	40	Hor. AFC 2 Filter
15	R Output	41	Hor. AFC 1 Filter
16	G Output	42	Hor. VCO(32 f

Absolute Maximum Ratings

Parameter	Symbol	Rating		Unit
Power supply voltage	V_{CC}	$\mathrm{V}_{\mathrm{CCl}}(14)$	10.5	V
		$\mathrm{V}_{\mathrm{CC} 3}(35)$	6.0	
Power supply current	I_{CC}	I_{14}	77	mA
		I_{35}	119	
		I_{39}	27	
Power dissipation *2	P_{D}	1372		mW
Operating ambient temperature ${ }^{* 1}$	$\mathrm{T}_{\text {opr }}$	-20 to +70		${ }^{\circ} \mathrm{C}$
Storage temperature *1	$\mathrm{T}_{\text {stg }}$	-55 to +150		${ }^{\circ} \mathrm{C}$

Note) *1: Except for the operating ambient temperature, and storage temperature, all ratings are for $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$.
*2: The power dissipation shown is the value for $\mathrm{T}_{\mathrm{a}}=70^{\circ} \mathrm{C}$. (Refer to "Technical Information")

Recommended Operating Range

Parameter	Symbol	Range	Unit
Operating supply voltage range	$\mathrm{V}_{\mathrm{CC} 1}$	8.1 to 9.9	V
	$\mathrm{V}_{\mathrm{CC} 3}$	4.5 to 5.5	
Operating supply pin voltage	V_{5}	0 to 6	V
	V_{9}	0 to V_{14}	
	V_{10}	0 to 6	
	V_{11}	0 to 6	
	V_{12}	0 to 6	
	V_{13}	0 to 6	
	V_{21}	0 to 6	
	V_{22}	0 to 6	
	V_{24}	0 to V_{14}	
	V_{25}	0 to V_{14}	
	V_{36}	0 to V_{14}	
	V_{38}	0 to V_{47}	
	V_{43}	0 to 2	
	V_{45}	0 to 6	
	V_{47}	0 to V_{14}	

Note) Do not apply external currents or voltage to any pins not specifically mentioned.
For ciicuit currents, ' + ' denotes current flowing into the IC, and ' - ' denotes current flowing out of the IC.

Recommended Operating Range

Parameter	Symbol	Range	Unit
Operating supply circuit current	I_{39}	10 to 25	mA
	I_{15}	-6.0 to +0.6	
	I_{16}	-6.0 to +0.6	
	I_{17}	-6.0 to +0.6	
	I_{28}	-0.3 to +0.1	
	I_{29}	-2.4 to +0.8	
	I_{33}	-0.8 to +0.1	
	I_{34}	-0.8 to +0.1	
	I_{44}	-6.4 to +0.1	
	I_{46}	-0.8 to +0.1	
	I_{47}	-0.3 to +0.1	

Note) Do not apply external currents or voltage to any pins not specifically mentioned.
For ciicuit currents, ' + ' denotes current flowing into the IC, and ' - ' denotes current flowing out of the IC.

Electrical Characteristics at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Power supply DAC data is standard.						
Supply current 1	I_{14}	Current when $\mathrm{V}_{14}=9 \mathrm{~V}$	38	48	58	mA
Supply current 2	I_{35}	Current when $\mathrm{V}_{35}=5 \mathrm{~V}$	48	60	72	mA
Steady state supply voltage	V_{39}	When pin 39 current $\mathrm{I}=15 \mathrm{~mA}$, pin 39 voltage	5.8	6.5	7.2	V
Steady state supply Current	I_{39}	Current when $\mathrm{V}_{39}=5 \mathrm{~V}$	2	5	7	mA
Steady state supply input resistance	R_{39}	DC measurement input resistance when $\mathrm{I}_{39}=10 \mathrm{~mA}$ to 25 mA	1	5	10	Ω
Interface						
Video adjust gain	$\mathrm{V}_{\text {PO }}$	$\text { DC measurement } 20 \log \frac{\text { output }(0 \mathrm{~A}=\mathrm{F} 8)}{\text { output }(0 \mathrm{~A}=08)}$	5	6	7	dB
Video adjust output resistance	$\mathrm{R}_{\mathrm{O} 29}$	DC measurement	70	120	170	Ω
External DAC 1 DC voltage (max.)	$\mathrm{V}_{\text {EXTI max }}$	Pin 24 DC voltage when DAC $0 \mathrm{C}=00$ DC measurement	3.10	3.40	3.70	V
External DAC 1 DC voltage (min.)	$\mathrm{V}_{\text {EXTlmin }}$	Pin 24 DC voltage when $\mathrm{DAC} 0 \mathrm{C}=7 \mathrm{~F}$ DC measurement	2.10	2.40	2.70	V
External DAC 2 DC voltage (max.)	$\mathrm{V}_{\text {EXT2 } 2 \text { max }}$	Pin 25 DC voltage $\mathrm{DAC} 0 \mathrm{~B}=00,04 \mathrm{D} 7=0$ DC measurement	7.8	8.1	8.7	V
External DAC 2 DC voltage (min.)	$\mathrm{V}_{\text {EXT2min }}$	Pin 25 DC voltage $\mathrm{DAC} 0 \mathrm{~B}=\mathrm{FF}, 04 \mathrm{D} 7=1$ DC measurement	0.1	0.8	1.0	V

Electrical Characteristics at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ (continued)

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Interface (continued)						
External DAC 3 DC voltage (max.)	$\mathrm{V}_{\text {EXT3max }}$	Pin 26 DC voltage when DAC 0D $=7 \mathrm{~F}$ DC measurement	5.50	6.00	6.50	V
External DAC 3 DC voltage (min.)	$\mathrm{V}_{\text {EXT3min }}$	Pin 26 DC voltage when $\mathrm{DAC} 0 \mathrm{D}=00$ DC measurement	0.90	1.00	1.15	V
External DAC 1 maximum output current	$\mathrm{I}_{\text {EXT1max }}$	Pin 24 DC current when DAC $0 \mathrm{C}=7 \mathrm{~F}$ DC measurement	200	-	-	$\mu \mathrm{A}$
External DAC 3 maximum output current	$\mathrm{I}_{\text {EXT3max }}$	Pin 26 DC current when DAC $0 \mathrm{D}=7 \mathrm{~F}$ DC measurement	1.0	-	-	mA
signal processing Input: $0.6 \mathrm{~V}_{\mathrm{PP}}\left(\mathrm{V}_{\mathrm{WB}}=0.42 \mathrm{~V}_{0 \mathrm{P}}\right.$ stair-step) at G-out						
Video output (typ.)	V_{YO}	DAC $03=40$ (typ.),(Contrast)	1.65	2.10	2.55	$\mathrm{V}_{\text {PP }}$
Video output (max.)	$\mathrm{V}_{\text {YOmax }}$	DAC $03=7 \mathrm{~F}$ (max.),(Contrast)	3.60	4.50	5.35	$\mathrm{V}_{\text {PP }}$
Video output (min.)	$\mathrm{V}_{\mathrm{YOmin}}$	DAC $03=00$ (min.),(Contrast)	0.07	0.25	0.50	V_{PP}
Contrast variable range	$\mathrm{Y}_{\text {Cmax/min }}$	DAC $03=7 \mathrm{~F}, \mathrm{DAC} 03=00$	20	25	33	dB
Video frequency characteristics	f_{YC}	$\mathrm{f}=0.2 \mathrm{MHz}$ as reference to -3 dB . DAC 0E D1 = 1,DAC $04=00$ (Sharp)	5.5	6.8	-	MHz
Sharpness variable range	$\mathrm{Y}_{\text {Smax } / \text { min }}$	$\begin{aligned} & \mathrm{f}=3.8 \mathrm{MHz}, \mathrm{DAC} 0 \mathrm{E} \text { D1 }=1 \\ & \text { Sharp : }(043 \mathrm{~F}) /(0400) \end{aligned}$	9	13	17	dB
Pedestal level (typ.)	$\mathrm{V}_{\text {PED }}$	DAC $02=80$ (typ.),(Brightness)	1.9	2.5	3.1	V
Pedestal variable range	$\Delta \mathrm{V}_{\text {PED }}$	Difference between DAC $02=00 \& F F$ (Brightness)	2.0	2.6	3.2	V
Brightness control sensitivity	$\Delta \mathrm{V}_{\text {BRT }}$	Average variable range of DAC $02=60$ \& 0	8	11	14	mV/step
Video input clamp voltage	$\mathrm{V}_{\text {YCLP }}$	Pin 31 clamp voltage	3.2	3.7	4.2	V
ACL sensitivity	ACL	When $\mathrm{V}_{20}=3.0 \mathrm{~V}-3.5 \mathrm{~V} 2$ times of Y-out increase	2.1	2.7	3.2	V/V
Blanking off threshold voltage	$\mathrm{V}_{\text {BOFF }}$	Reduse pin 30 voltage; the voltage when blanking is off	0.3	0.5	0.9	V
Blanking level	$\mathrm{V}_{\text {YBL }}$	Blanking pulse DC voltage.	0.5	1.0	1.5	V
DC transmission quantity	T_{DC}	$\begin{aligned} & \mathrm{APL}: 10 \% \text { to } 90 \%, \mathrm{TDC} \\ & \mathrm{TDC} \frac{(\Delta \mathrm{AC}-\Delta \mathrm{DC}) 100 \%}{\Delta \mathrm{AC}} \end{aligned}$	9	100	110	\%
Video input clamp current	$\mathrm{I}_{\text {YCLP }}$	DC measurement IC : internal sink current	8	13	18	$\mu \mathrm{A}$
ACL start point	$\mathrm{V}_{\text {ACL }}$	ACL pin 20 voltage reduces from 5 V until output is lesser by 10%	3.4	3.7	4.0	V

Electrical Characteristics at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ (continued)

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Color signal processing	All tests on: Burst $300 \mathrm{mV}_{\mathrm{PP}}$ (PAL), typ.: B-out					
Color difference output (typ.)	$\mathrm{V}_{\text {Cotyp }}$	Input: Color bar DAC $00=40$ (typ.), DAC $03=40$ (typ.)	2.6	3.3	4.0	$\mathrm{V}_{\text {PP }}$
Color difference output (max.)	$\mathrm{V}_{\text {COmax }}$	Input: Color bar $\text { DAC } 00=7 \mathrm{~F}, \mathrm{DAC} 03=40$	2.3	3.0	-	$\mathrm{V}_{\text {OP }}$
Color difference output (min.)	$\mathrm{V}_{\text {COmin }}$	Input: Color bar $\text { DAC } 00=00, \text { DAC } 03=40$	0	-	100	$m V_{\text {PP }}$
Chroma contrast variable range	$\mathrm{C}_{\text {Cmax } / \text { min }}$	DAC $00=40$, DAC $03=7 \mathrm{~F}$, DAC $03=00$	20	25	33	dB
ACC.characteristics 1	ACC1	Input: Rainbow Burst increase from $300 \mathrm{mV}_{\mathrm{PP}} \rightarrow 600 \mathrm{mV}_{\mathrm{PP}}$	0.9	1.0	1.2	Times
ACC.characteristics 2	ACC2	Input: Rainbow Burst decrease from $300 \mathrm{mV}_{\mathrm{PP}} \rightarrow 60 \mathrm{mV}_{\mathrm{PP}}$	0.7	1.0	1.1	Times
NTSC tint centre	$\Delta \theta_{\mathrm{C}}$	Difference between DAC $01=40$ \& when tint is centre	-13	0	13	Step
NTSC tint adjustable range 1	$\Delta \theta_{1}$	Input: Rainbow, DAC $01=7 \mathrm{~F}$ (Tint)	30	50	65	Deg
NTSC tint adjustable range 2	$\Delta \theta_{2}$	Input: Rainbow, DAC $01=00$ (Tint)	-65	-50	-30	Deg
Demodulation output ratio (R) PAL,NTSC	R/B	Input: Rainbow Ratio of R-out/B-out	0.71	0.83	0.95	Times
Demodulation output ratio (G) PAL,NTSC	G/B	Input: Rainbow Ratio of G-out/B-out	0.31	0.37	0.43	Times
Color difference output angle (R) PAL,NTSC	$\angle \mathrm{R}$	Input: Rainbow	78	90	102	Deg
Color difference output angle (G) PAL,NTSC	$\angle \mathrm{G}$	Input: Rainbow	224	236	248	Deg
Color killer tolerance (PAL)	$\mathrm{V}_{\text {KILLP }}$	Input: Color bar, $0 \mathrm{~dB}=300 \mathrm{mV}_{\mathrm{PP}}$ Attenuate input level	-57	-44	-34	dB
Color killer tolerance (NTSC)	$\mathrm{V}_{\text {KILLN }}$	Input: Color bar, $0 \mathrm{~dB}=300 \mathrm{mV}$ PP Attenuate input level	-57	-44	-34	dB
APC pull-in range (H) PAL,NTSC	$\mathrm{f}_{\text {CPH }}$	Input: Color bar High side pull-in range	450	900	-	Hz
APC pull-in range (L) PAL,NTSC	$\mathrm{f}_{\text {CPL }}$	Input: Color bar Low side pull-in range	-	-900	-450	Hz
Color killer detector output voltage (Color)	V_{KC}	Voltage at pin 5 when chroma signal is inputed	4.5	5.0	-	V
Color killer detector output voltage (B/W)	$\mathrm{V}_{\text {KBW }}$	Voltage at pin 5 when no chroma signal is inputed	0	0.1	0.5	V

Electrical Characteristics at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ (continued)

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Color signal processing (continued)		All tests on: Burst $300 \mathrm{mV} \mathrm{PPP}^{\text {(PAL), typ.: B-out }}$				
Demodulation output-(B-Y) PAL,NTSC	$\mathrm{V}_{\text {DB }}$	Input: Color bar (NTSC: Adjust to tint centre)Measure pin 48	555	695	835	$\mathrm{mV}_{\text {PP }}$
Demodulation output-(R-Y) PAL,NTSC	V_{DR}	Input: Color bar (NTSC: Adjust to tint centre)Measure pin 49	430	540	650	mV PP
Demodulation output angle $\angle \mathrm{B}$ PAL,NTSC	$\angle \mathrm{R}_{\mathrm{DB}}$	Input: Rainbow Phase difference of $\mathrm{B}-\mathrm{Y}$ axis	-5	0	5	Deg
Demodulation output angle $\angle \mathrm{R}$ PAL,NTSC	$\angle \mathrm{R}_{\mathrm{DR}}$	Input: Rainbow Phase difference of $\mathrm{B}-\mathrm{Y}$ and $\mathrm{R}-\mathrm{Y}$ axis	85	90	95	Deg
CW output level(4.43 MHz)	$\mathrm{V}_{\text {CWP }}$	AC component at pin 47 when VCO is at 4.43 MHz	250	300	350	$\mathrm{mV}_{\text {PP }}$
CW output level(3.58 MHz)	$\mathrm{V}_{\text {CWN }}$	AC component at pin 47 when VCO is at 3.58 MHz	-	0	50	$\mathrm{mV}_{\text {PP }}$
SECAM output CW period	T_{CW}	Period of CW is outputed when in SECAM	1.31	1.41	1.51	ms
SECAM detector current	$\mathrm{I}_{\text {SECAM }}$	Minimum current from pin 47 when SECAM is detected	50	100	150	$\mu \mathrm{s}$
PAL/NTSC output DC voltage	$\mathrm{V}_{47 \mathrm{PN}}$	PAL/NTSC output DC voltage at pin 47	0.80	1.30	1.65	V
SECAM output DC voltage	$\mathrm{V}_{47 \mathrm{~S}}$	SECAM output DC voltage at pin 47	4.1	4.6	5.1	V
Demodulation output impedance (PAL/NTSC) $-(\mathrm{R}-\mathrm{Y}),-(\mathrm{B}-\mathrm{Y})$	$\mathrm{R}_{\text {O48,49PN }}$	Pin impadance of pin 48, pin 49 in PAL/ NTSC mode	390	480	570	Ω
Demodulation output impedance (SECAM) $-(\mathrm{R}-\mathrm{Y}),-(\mathrm{B}-\mathrm{Y})$	$\mathrm{R}_{\mathrm{O48,49S}}$	Pin impadance of pin 48, pin 49 in SECAM mode	100	-	-	$\mathrm{k} \Omega$

RGB processing DAC data standard

Pedestal difference voltage	$\Delta \mathrm{V}_{\mathrm{IPL}}$	R,G,B out pedestal difference voltage	0	-	0.3	V
Brightness voltage tracking	$\Delta \mathrm{V}_{\mathrm{BL}}$	DAC $02=40$ to C0 (Brightness). Ratio of variable level	0.9	1.0	1.1	Times
Video voltage gain ratio	$\Delta \mathrm{G}_{\mathrm{YC}}$	R,B out output ratio with G-out	0.8	1.0	1.2	Times
Video voltage gain tracking	$\Delta \mathrm{T}_{\mathrm{CONT}}$	DAC 03=20 to 60 ratio (contrast) of gain	0.9	1.0	1.1	Times Times
Driver control characteristics	G_{DV}	R,B out AC adj. amount Driver DAC $08=00$ to FF Driver DAC $09=00$ to FF	5.3	6.3	7.3	dB
Cut-off control characteristics	$\mathrm{V}_{\mathrm{CUTOFF}}$	R,G,B output DC cut off DAC range from min.to max.	1.9	2.4	2.9	V
Y_{S} threshold voltage	V_{YS}	Smallest level when Y_{S} is on	0.7	1.0	1.3	V

Electrical Characteristics at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ (continued)

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
RGB processing (continued) DAC data standard						
External RGB DC Voltage	$\mathrm{V}_{\text {EPL }}$	Y_{S} is on	1.7	2.3	2.9	V
External RGB pedestal difference voltage(R/B)(G/B)	$\Delta \mathrm{V}_{\mathrm{EPL}}$	Y_{S} is on	0	-	250	mV
Internal/External pedestal difference voltage	$\Delta \mathrm{V}_{\text {PL/IE }}$	Internal-External	50	200	400	mV
External RGB output Voltage	$\mathrm{V}_{\text {ERGB }}$	Input $3 \mathrm{~V}_{\mathrm{PP}}$, DAC $03=7 \mathrm{~F}$ (Contrast)	4.3	5.4	6.5	V_{PP}
External RGB output difference voltage	$\Delta \mathrm{V}_{\text {ERGB }}$	Input $3 \mathrm{~V}_{\mathrm{PP}}$, DAC $03=7 \mathrm{~F}$ (Contrast)	-0.6	0	+ 0.6	V
External RGB contrast control characteristics	$\mathrm{E}_{\text {Cmax/min }}$	DAC $03=7 \mathrm{~F}, \mathrm{DAC} 03=00$	10	13	16	dB
External RGB frequency characteristics	$\mathrm{f}_{\text {RGBC }}$	Input $0.2 \mathrm{~V}_{\mathrm{PP}}, \mathrm{DC}=1 \mathrm{~V}$	8	12	-	MHz
Synchronizing signal processing						
Horizontal output free run frequency	f_{HO}	No input signal The frequency at pin 44	15.33	15.63	15.93	kHz
Horizontal output pulse duty	$\tau_{\text {НО }}$	Horizontal output pulse's high level's duty	31	37	43	\%
Horizontal output pull-in range	f_{HP}	Horizontal sync. sep. freq. pull-in approaching 15.625 kHz	± 500	± 650	-	Hz
Vertical free run frequency (PAL)	$\mathrm{f}_{\text {VO-P }}$	Forced 50 Hz mode, DAC 0E-D2 = 1 D3 $=0$, No sync.signal input	48	50	52	Hz
Vertical free run frequency (NTSC)	$\mathrm{f}_{\mathrm{VO}-\mathrm{N}}$	Forced 60 Hz mode, DAC 0E-D2 = 1 D3 $=1$, No sync.signal input	58	60	62	Hz
Vertical output pulse width NTSC, PAL	τ_{VO}	Hor. \& Ver.sync. condition,the pulse width at pin 46	9	10	11	1/fH
Vertical pull-in range (PAL)	$\mathrm{f}_{\text {VPP }}$	$\mathrm{f}_{\mathrm{H}}=15.625 \mathrm{kHz}$, Forced 50 Hz mode	46	-	54	Hz
Vertical pull-in range (NTSC)	$\mathrm{f}_{\text {VPN }}$	$\mathrm{f}_{\mathrm{H}}=15.75 \mathrm{kHz}$, Forced 60 Hz mode	56	-	64	Hz
Horizontal output voltage (H)	$\mathrm{V}_{44 \mathrm{H}}$	Horizontal output pulse's high level's DC voltage	3.2	3.5	3.8	V
Horizontal output voltage (L)	$\mathrm{V}_{44 \mathrm{~L}}$	Horizontal output pulse's low level's DC voltage	0	-	0.3	V
Vertical output voltage (H)	$\mathrm{V}_{46 \mathrm{H}}$	Vertical output pulse's high level's DC voltage	3.9	4.2	4.5	V
Vertical output voltage (L)	$\mathrm{V}_{46 \mathrm{~L}}$	Vertical output pulse's low level's DC voltage	0	-	0.3	V
Screen centre variable range	$\Delta \mathrm{T}_{\mathrm{HC}}$	Variable amount of phase between $\mathrm{H}_{\text {SYNC }}$ \& $\mathrm{H}_{\text {OUT }}$ DAC $0 \mathrm{~A}=80$ to 8 F	2.6	3.2	4.4	$\mu \mathrm{s}$

Electrical Characteristics at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ (continued)

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Synchronizing signal processing (continued)						
Shut down operating	$\mathrm{V}_{43 \mathrm{~L}}$	Pin 43 minimum voltage when H -out does not appear	0.60	0.68	0.76	V
Vertical frequency detection operation $(50 \mathrm{~Hz})$	f_{50}	Vertical input freq.when the DC level at pin $45=" L "(<0.5 \mathrm{~V})$	47	-	55	Hz
Vertical frequency detection operation $(60 \mathrm{~Hz})$	f_{60}	Vertical input freq. when the DC level at pin $45=$ " H " $(>4.5 \mathrm{~V})$	57	-	63	Hz
Sync. separation input clamp voltage (Vertical)	V_{33}	V_{33} clamp voltage	1.0	1.3	1.6	V
Sync. separation input clamp voltage (Horizontal)	V_{34}	V_{34} clamp voltage	1.0	1.3	1.6	V
Horizontal output start voltage	$\mathrm{V}_{\mathrm{fHS}}$	Minimum V_{38} when horizontal output is above $1 \mathrm{~V}_{\mathrm{PP}}$, fo $>10 \mathrm{kHz}$	3.4	4.2	5.0	V
$\mathrm{I}^{2} \mathrm{C}$ interface						
Sinking current at ACK	$\mathrm{I}_{\text {ACK }}$	When ACK, pin21 pin current with $2.2 \mathrm{k} \Omega$ pull-up to 5 V	1.8	2.5	5.0	mA
SCL,SDA signal input high level	$\mathrm{V}_{\text {IHI }}$	-	3.1	-	5.0	V
SCL,SDA signal input low level	$\mathrm{V}_{\text {ILO }}$	-	0	-	0.9	V
Input possible maximum frequency	$\mathrm{f}_{\text {Imax }}$	-	100	-	-	Kbit/s

- Reference data for design

Note) The characteristic listed below are theoretical values based on the IC design and are not guaranteed.

| Parameter | Symbol | Conditions | Min | Typ | Max | Unit |
| :--- | :---: | :--- | :--- | :---: | :---: | :---: | :---: |
| Video signal processing | Input: $0.6 \mathrm{~V}_{\mathrm{PP}}\left(\mathrm{V}_{\mathrm{WB}}=0.42 \mathrm{~V}_{\text {OP }}\right.$ stair-step) at G-out | | | | | |
| Y signal delay time | t_{DL} | Measure output's delay time with input
 (PAL = 4.43 MHz) | 620 | 690 | 760 | ns |
| Black level correction 1 | $\mathrm{V}_{\text {BLC1 }}$ | All black input. Find the diff.of G-out when
 pin 30 is 9 V \& open | -100 | 0 | +100 | mV |
| Black level correction 2 | $\mathrm{V}_{\text {BLC2 }}$ | All black input. Find the diff.of G-out when
 pin 30 is 3 V \& 9 V | 500 | 800 | 1100 | mV |
| Black level correction 3 | $\mathrm{V}_{\text {BLC3 }}$ | Input: About 20 IRE the diff.of G-out when
 pin 30 is open \& 9 V | 100 | 300 | 500 | mV |
| Contrast variation with
 sharpness | $\Delta \mathrm{V}_{\mathrm{CS}}$ | Y-out output level difference when
 sharpness = max. to min. | -300 | 0 | +300 | mV |
| Brightness variation with
 sharpness | $\Delta \mathrm{V}_{\mathrm{BS}}$ | Pedestal DC level difference when
 sharpness = max. to min. | -250 | 0 | +250 | mV |

Electrical Characteristics at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ (continued)

- Reference data for design (continued)

Note) The characteristic listed below are theoretical values based on the IC design and are not guaranteed.

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Video signal processing (continued)						
Y input dynamic range	$\mathrm{V}_{\text {Imax }}$	Contrast DAC $03=40$ Measure at video input Pin31	1.0	1.7	-	$\mathrm{V}_{\text {PP }}$
Y S/N ratio	SN_{Y}	Contrast DAC $03=7 \mathrm{~F}$	51	56	-	dB
Black level expansion start point	$\mathrm{V}_{\text {BLS }}$	Start point when $\mathrm{V}_{36}=4.5 \mathrm{~V}$	37	42	47	IRE
Trap on/off gain difference	$\Delta \mathrm{G}_{\text {TRAP }}$	Trap on/off ratio	-1	0	+1	dB
Trap on/off delay time variation	$\Delta t_{\text {TRAP }}$	Trap on/off	480	530	580	ns
Trap frequency tolerance	$\Delta \mathrm{f}_{\text {TRAP }}$	When chroma input is 4.43 MHz , trap centre frequency from 4.43 M	-70	0	+70	kHz
Trap attenuation 4.43 MHz	$\mathrm{ATT}_{\text {TRAPP }}$	When chroma input is $4.43 \mathrm{MHz}, 4.43 \mathrm{MHz}$ component attenuation	26	30	-	dB
Trap attenuation 3.58 MHz	ATT $_{\text {TRAPN }}$	When chroma input is $3.58 \mathrm{MHz}, 3.58 \mathrm{MHz}$ component attenuation	26	30	-	dB
Trap automatic adjustment range	$\mathrm{f}_{\text {TRAP }}$	VCO frequency of $\Delta \mathrm{f}_{\text {TRAP }} \leq 70 \mathrm{kHz}$	3	-	5	MHz
Trap set frequency	$\mathrm{f}_{\text {ST }}$	DAC $0 \mathrm{E}-\mathrm{D} 6=1$ Trap's frequency	4.7	5.5	6.3	MHz
Video signal output V_{CC} variation	$\Delta \mathrm{V}_{\mathrm{Y}} / \mathrm{V}$	$\mathrm{V}_{\mathrm{CC1}}=9 \mathrm{~V}(\pm 10 \%)$	0	100	200	mV / V
Video signal output temperature variation	$\Delta \mathrm{V}_{\mathrm{Y}} / \mathrm{T}$	$\mathrm{T}_{\mathrm{a}}=-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	0	5	10	\%
PAL/NTSC delay time difference	$\Delta t_{\text {P/N }}$	Trap on(NTSC-PAL)	-10	10	30	ns
Color signal processing All tests on: Burst $300 \mathrm{mV} \mathrm{PP}(\mathrm{PAL})$ standard is B-out						
Demodulation output residue carrier	$\mathrm{V}_{\text {CAR1 }}$	Pin 48, pin 49 output's 2nd harmonics	0	-	30	mV
Color difference output residue carrier	$\mathrm{V}_{\text {CAR2 }}$	Pin 15, pin 16, pin 17 output's 2nd harmonics	0	-	50	mV
VCO free run frequency (PAL)	f_{CP}	Compare with standard $\mathrm{f}=4.433619 \mathrm{MHz}$	-300	0	+300	Hz
VCO free run frequency (NTSC)	f_{CN}	Compare with standard $\mathrm{f}=3.579545 \mathrm{MHz}$	-300	0	+300	Hz
VCO V_{CC} variation	$\frac{\Delta \mathrm{f}_{\mathrm{C}}}{\overline{\mathrm{~V}_{\mathrm{CC}}}}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC} 1}=9 \mathrm{~V}(\pm 10 \%) \\ & \mathrm{V}_{\mathrm{CC} 3}=5 \mathrm{~V}(\pm 10 \%) \end{aligned}$	-300	0	+300	Hz
Phase hold characteristic (PAL)	$\Delta \theta_{\mathrm{P}}$	Tint change when $\Delta \mathrm{f}_{\mathrm{C}}=-300 \mathrm{~Hz} \text { to }+300 \mathrm{~Hz}$	0	2	5	$\frac{\mathrm{deg}}{100 \mathrm{~Hz}}$

- Electrical Characteristics at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ (continued)

- Reference data for design (continued)

Note) The characteristic listed below are theoretical values based on the IC design and are not guaranteed.

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Color signal processing (continued)		All tests on: Burst $300 \mathrm{mV}_{\mathrm{PP}}$ (PAL)standard is B-out				
Phase hold characteristic (NTSC)	$\Delta \theta_{\mathrm{N}}$	Tint change when $\Delta \mathrm{f}_{\mathrm{C}}=-300 \mathrm{~Hz} \text { to }+300 \mathrm{~Hz}$	0	2	5	$\frac{\mathrm{deg}}{100 \mathrm{~Hz}}$
Color difference output PAL/NTSC ratio	$\mathrm{R}_{\mathrm{P} / \mathrm{N}}$	R out PAL/R out NTSC	0.8	1.0	1.2	Times
Line crawling	$\Delta \mathrm{V}_{\text {PAL }}$	Pin49: -(R-Y)out every 1 H output difference in voltage	0	-	50	mV
Color difference output frequency characteristics	f_{CC}	Bandwidth when gain reduces by 3 dB	-	1.0	-	MHz
Chroma BPF characteristics (PAL)	$\mathrm{BPF}_{\mathrm{P}}$	$\mathrm{f}=4.43 \mathrm{MHz}-2.00 \mathrm{MHz}$ output level difference	-	32	-	dB
Chroma BPF characteristics (NTSC)	$\mathrm{BPF}_{\mathrm{N}}$	$\mathrm{f}=3.58 \mathrm{MHz}$ to 2.00 MHz output level difference	-	22	-	dB
Color difference output V_{CC} variation	$\Delta \mathrm{V}_{\mathrm{C}} / \mathrm{V}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC} 1}=9 \mathrm{~V}(\pm 10 \%) \\ & \mathrm{V}_{\mathrm{CC} 3}=5 \mathrm{~V}(\pm 10 \%) \end{aligned}$	-	± 10	± 15	\%
Color difference output Temperature variation	$\Delta \mathrm{V}_{\mathrm{C}} / \mathrm{T}$	Temperature: $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	-	± 10	± 15	\%
Color variation to brightness variation	V_{BC}	When color: max.to min. the difference in pedestal DC	-250	0	$+250$	mV
Color to brightness variation voltage	$\Delta \mathrm{V}_{\text {BC }}$	RGB output variation voltage difference	0	-	20	mV

RGB processing

$(\mathrm{C}-\mathrm{Y}) / \mathrm{Y}$ ratio	$\mathrm{R}_{\mathrm{C} / \mathrm{Y}}$	Input: Color bar. B-out, contrast: typ. Color: DAC 00 = 60	0.9	1.2	1.5	$\frac{\mathrm{~V}_{\mathrm{OP}}}{\frac{\mathrm{V}_{\mathrm{PP}}}{}}$
$\mathrm{C}-\mathrm{Y}, \mathrm{Y}$ delay difference	$\Delta \mathrm{t}_{\mathrm{C} / \mathrm{Y}}$	Input: Color bar, B-out Green = magenta delay	-100	0	+100	ns
Y_{S} switching speed	f_{YS}	External input 3 V output level when at -3 dB frequency	7	11	-	MHz
Exeternal RGB input dynamic range	$\mathrm{V}_{\mathrm{DEXT}}$	DAC 03 = 7 F(Contrast : max.)	2.0	2.5	3.2	$\mathrm{~V}_{\mathrm{OP}}$
Internal/External RGB crosstalk	$\mathrm{CT}_{\mathrm{RGB}}$	$\mathrm{f}=1$ MHz 1 V_{PP} The crosstalk level when $\mathrm{Y}_{\mathrm{S}}=5 \mathrm{~V}$	-	-60	-50	dB
Spot killer operation	$\mathrm{V}_{\mathrm{SPK}}$	Voltage at pin 9 from $\mathrm{V}_{9}=9 \mathrm{~V}$ reduces until spot killer is on	7.4	7.8	8.2	V
Contrast variation to brightness variation	$\mathrm{V}_{\mathrm{BAC}}$	When contrast is max.to min., the diff. in pedestal DC	-250	0	+250	mV

Electrical Characteristics at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ (continued)

- Reference data for design (continued)

Note) The characteristic listed below are theoretical values based on the IC design and are not guaranteed.

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
RGB processing (continued)						
Contrast to brightness variation voltage	$\Delta \mathrm{V}_{\text {BAC }}$	RGB output variation voltage difference	0	-	20	mV
RGB output color/BW DC difference voltage	$\Delta \mathrm{V}_{\text {CBW }}$	Difference in pedestal voltage between burst on/off	-60	0	$+60$	mV
Pedestal level V_{CC} variation	$\Delta \mathrm{V}_{\mathrm{PL}} / \mathrm{V}$	Pedestal level change when $\mathrm{V}_{\mathrm{CC} 1}=9 \mathrm{~V}(\pm 10 \%)$	0	200	400	mV / V
Pedestal level temperature variation	$\Delta \mathrm{V}_{\mathrm{PL}} / \mathrm{T}$	Pedestal level change when temperature is $-20^{\circ} \mathrm{C} \sim+70^{\circ} \mathrm{C}$	-2.6	-2.2	-1.8	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Pedestal level 2	$\mathrm{V}_{\mathrm{PD} 2}$	The pedestal level when G cutoff DAC $05=18$	2.1	2.7	3.3	V
Synchoronizing signal processing						
Lock detector output voltage	$\mathrm{V}_{\text {LD }}$	Pin18 DC voltage when horizonal AFC is locked	5.7	6.3	6.9	V
Lock detector charging current	$\mathrm{I}_{\text {LD }}$	DC measurement	± 0.6	± 0.8	± 1.1	mA
FBP input slice level (RGB)	$\mathrm{V}_{\mathrm{FBP}}$	Minimum voltage at which blacking of RGB outputs happens	0.40	0.75	1.10	V
FBP input slice level (AFC2)	$\mathrm{V}_{\text {FBPH }}$	Minimum voltage at which AFC 2 operates	1.5	1.9	2.3	V
Horizontal AFC μ	μ_{H}	Calculate from AFC current DC measurement	30	37	44	$\mu \mathrm{A} / \mu \mathrm{s}$
Horizontal VCO- β curve	β_{H}	Slope of β curve near to $\mathrm{f}=15.7 \mathrm{kHz}$	1.4	1.9	2.4	Hz/mV
Burst gate pulse position NTSC,PAL	$\mathrm{P}_{\text {BGP }}$	When hor. AFC is on, hor. sync. rising edge to the BGP rising edge	0.2	0.4	0.6	$\mu \mathrm{s}$
Burst gate pulse width (PAL)	$\mathrm{W}_{\text {BGPP }}$	When hor. AFC is on, BGP's pulse width	3.4	4.0	4.6	$\mu \mathrm{s}$
Burst gate pulse width (NTSC)	$\mathrm{W}_{\text {BGPN }}$	When hor. AFC is on, BGP's pulse width	2.5	3.0	3.5	$\mu \mathrm{s}$
Burst gate pulse output voltage	$\mathrm{V}_{\text {BGP }}$	Pin50 DC voltage during BGP period	4.5	4.7	4.9	V
Horizontal blanking pulse output voltage	$\mathrm{V}_{\text {HBLK }}$	Pin50 DC voltage during H-blanking period	2.1	2.4	2.7	V
Vertical blanking pulse output voltage	$\mathrm{V}_{\text {VBLK }}$	Pin50 DC voltage during V-blanking period	2.1	2.4	2.7	V
Vertical blanking pulse width (PAL)	W_{VP}	Pulse width when $\mathrm{f}_{\mathrm{H}}=15.625 \mathrm{kHz}$	1.31	1.41	1.51	ms
Vertical blanking pulse width (NTSC)	W_{VN}	Pulse width when $\mathrm{f}_{\mathrm{H}}=15.73 \mathrm{kHz}$	1.01	1.11	1.21	ms
FBP allowable range	$\mathrm{T}_{\text {FBP }}$	delay from hor. output rising edge to FBP centre	12	-	19	$\mu \mathrm{s}$

Electrical Characteristics at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ (continued)

- Reference data for design (continued)

Note) The characteristic listed below are theoretical values based on the IC design and are not guaranteed.

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
$\mathrm{I}^{2} \mathrm{C}$ interface						
Bus free before start	$\mathrm{t}_{\text {BUF }}$	-	4.0	-	-	$\mu \mathrm{s}$
Start condition set-up time	$\mathrm{t}_{\text {SU,STA }}$	-	4.0	-	-	$\mu \mathrm{s}$
Start condition hold time	$\mathrm{t}_{\mathrm{HD}, \mathrm{STA}}$	-	4.0	-	-	$\mu \mathrm{s}$
"L" period SCL, SDA	$\mathrm{t}_{\text {LOW }}$	-	4.0	-	-	$\mu \mathrm{s}$
"H" period SCL	$\mathrm{t}_{\mathrm{HIGH}}$	-	4.0	-	-	$\mu \mathrm{s}$
Rise time SCL,SDA	t_{r}	-	-	-	1.0	$\mu \mathrm{s}$
Fall time SCL,SDA	t_{f}	-	-	-	0.35	$\mu \mathrm{s}$
Data set-up time (Write)	$\mathrm{t}_{\text {SU,DAT }}$	-	0.25	-	-	$\mu \mathrm{s}$
Data hold time (Write)	$\mathrm{t}_{\text {HD, DAT }}$	-	0	-	-	$\mu \mathrm{s}$
Acknowledge set-up time	$\mathrm{t}_{\text {SU,ACK }}$	-	-	-	3.5	$\mu \mathrm{s}$
Acknowledge hold time	$\mathrm{t}_{\mathrm{HD}, \mathrm{ACK}}$	-	0	-	-	$\mu \mathrm{s}$
Stop condition set-up time	$\mathrm{t}_{\text {SU, STO }}$	-	4.0	-	-	$\mu \mathrm{s}$
DAC						
4,6,7-bit DAC DNLE	$\mathrm{L}_{4,6,7}$	$\begin{aligned} & 1 \mathrm{LSB}=\{\operatorname{Data}(\text { max. })-\mathrm{Data}(00)\} / 15(4 \text {-bit) } \\ & 63 \text { (6-bit), } 127 \text { (7-bit) } \end{aligned}$	0.1	1.0	1.9	$\frac{\text { LSB }}{\text { Step }}$
8-bit DAC DNLE	L_{8}	$1 \mathrm{LSB}=\{\operatorname{Data}(\mathrm{FF})-\operatorname{Data}(00)\} / 255(8-\mathrm{bit})$	0.1	1.0	1.9	$\frac{\text { LSB }}{\text { Step }}$
Cut off DAC overlap	Δ Step	The overlap between the two 8-bit sections of R,B cutoff \& AFT	27	32	37	Step

Electrical Characteristics at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ (continued)

- Description of test circuits and test methods
1.Input signal
(1) Video $\quad: 10$ stairs waveform $0.6 \mathrm{~V}_{\mathrm{PP}}\left(\mathrm{V}_{\mathrm{BW}}=0.42 \mathrm{~V}_{\mathrm{OP}}\right)$
(2) Chroma : Color bar signal : Burst level $300 \mathrm{mV}_{\mathrm{PP}}$

Rainbow signal : Burst level $300 \mathrm{mV}_{\mathrm{PP}}$
(3) Synchronous : Horizontal, vertical synchronous signal input are $1.5 \mathrm{~V}_{\mathrm{PP}}$ to $2.5 \mathrm{~V}_{\mathrm{PP}}$
2. $\mathrm{I}^{2} \mathrm{C}$ bus condition : (PAL)

Sub address	Data(H)
00	40
01	40
02	80
03	40
04	80
05	00
06	00
07	00
08	80
09	80
0 A	01
$0 B$	40
0 C	40
0 D	01
0 E	

Control	Data(H)
Color	$00=40$
Tint	$01=40$
Brightness	$02=80$
Contrast	$03=40$
Sharpness	$04=00$
Cutoff R,B	$05,07=00$
Cutoff G	$06=00$
Driver R,B	$08,09=80$
Video output	$0 \mathrm{~A}($ upper byte $)=8 *$
Hor.centre	$0 \mathrm{~A}($ lower byte $)=* 8$
External DAC 2	$0 \mathrm{OB}=01(04-\mathrm{D} 7=1)$
External DAC 1	$0 \mathrm{C}=40$
External DAC 3	$0 \mathrm{D}=40$

Pin Equivalent Circuit
Pin No.

Pin Equivalent Circuit (continued)
Pin No.

Pin Equivalent Circuit (continued)

Pin No.	Equivalent circuit	Function	Status
14	-	$\mathrm{V}_{\mathrm{CC} 1}(\text { typ. } 9 \mathrm{~V}):$ - IF circuit - Video circuit - RGB circuit	$\begin{aligned} & \mathrm{DC} \\ & 9 \mathrm{~V} \end{aligned}$
$\begin{aligned} & 15 \\ & 16 \\ & 17 \end{aligned}$		Pin15: R out Pin Pin16: G out Pin Pin17: B out Pin - BLK level about 0.9 V - Black(pedestal)level about 2.2 V - If Pin30(Black level detection output pin) is 0 V , blanking is removed.	AC
18		Horizontal Synchronous Detection Output Pin : - The phase between horizontal synchronous signal and horizontal output pulse is detected - When synchronising comes off, Pin18 voltage goes low - When not synchronising, color control is minimum, and chroma output disappears - In the case where Pin18 voltage is used by MICOM, impedance has to be taken $\operatorname{care}(\mathrm{Zo} \geq 1 \mathrm{M} \Omega$ is required) - H sync. period, Pin44 level is "H" : I_{1} on "L" : I_{2} on	DC When synchronising about $\mathrm{V}_{\mathrm{CC} 2}-\mathrm{V}_{\mathrm{SAT}}$ When synchronising comes off about 0.3 V
19	-	GND : - RGB circuit - DAC I ${ }^{2} \mathrm{C}$ circuit - IF circuit	-

Pin Equivalent Circuit (continued)

Pin No.	Equivalent circuit	Function	Status
20		ACL Pin : - When Pin20 DC voltage is externally decreased, contrast is limited	DC about 3 V
21		$\mathrm{I}^{2} \mathrm{C}$ BUS DATA Input Pin :	$\begin{gathered} \mathrm{AC} \\ \text { (Pulse) } \end{gathered}$
22		$\mathrm{I}^{2} \mathrm{C}$ BUS CLOCK Input Pin :	$\begin{gathered} \mathrm{AC} \\ \text { (Pulse) } \end{gathered}$
23	-	GND : - External DAC circuit	-
24		External DAC 1 Pin : - External DAC 1 voltage is adjustable by using $\mathrm{I}^{2} \mathrm{C}$ bus	DC

Pin Equivalent Circuit (continued)
Pin No.

Pin Equivalent Circuit (continued)

Pin No .	Function	Status

\square Pin Equivalent Circuit (continued)

Pin No.	Equivalent circuit	Function	Status
33 34		Pin33 : Vertical Sync. Separation Input Pin Pin34 : Horizontal Sync. Separation Input Pin - Pin33, 34 internal circuits are similar - Usually, vertical synchronous threshold is deeper than horizontal synchronous' threshold. Thus $\mathrm{R}_{\mathrm{V}}>\mathrm{R}_{\mathrm{H}}$ - R_{H} and C_{H} determine cutoff frequency at about 500 kHz - $\mathrm{R} \rightarrow$ big, threshold becomes deeper (Sync. compression is weaker). $\mathrm{R} \rightarrow$ small, threshold becomes shallower (fluctuation becomes weaker due to vertical sag) Sync. top is clamped at 1.3 V	
35	-	$\mathrm{V}_{\mathrm{CC} 3}(\operatorname{typ} .5 \mathrm{~V}):$ - For chroma and jungle circuit	$\begin{aligned} & \mathrm{DC} \\ & 5 \mathrm{~V} \end{aligned}$
36		Chroma Signal Input Pin Black Expansion Starting Point Adjustment Pin : - Pin36 is chroma signal input pin and external DC voltage is applied to adjust the starting point of black expansion	$\begin{gathered} \mathrm{AC}+\mathrm{DC} \\ \text { Burst typ. } \\ 300 \mathrm{mV}_{\mathrm{PP}} \\ \text { DC typ. } \\ 4.5 \mathrm{~V} \end{gathered}$
37	-	GND : - For video,chroma and jungle circuit	$\begin{aligned} & \mathrm{DC} \\ & 0 \mathrm{~V} \end{aligned}$
38		FBP Input Pin : - The FBP input pin is for horizontal blanking and AFC circuit - Threshold level for HBLK : 0.7 V AFC : 1.9 V - External DC 1.3 V must be applied to become all blanking - Input voltage below 0 V is prohibited	AC FBP $]$

Pin Equivalent Circuit (continued)

Pin No.	Equivalent circuit	Function	Status
39		Horizontal Steady State Supply Pin : - Steady state supply is used by horizontal circuit startup. Internal voltage regulating circuit is present	$\begin{gathered} \hline \text { DC } \\ 6.5 \mathrm{~V} \end{gathered}$
40		Horizontal AFC 2 Filter Pin : - FBP and IC internal pulse phase difference is compared. At Pin40, a capacitor is connected for charging and discharging this current - The current from the picture centre position adjustment DAC establishes DC by chaging and discharging current - Time difference from Hout to FBP-in depends on V_{40} which changes the slice level of internal sawtooth waveform	$\begin{gathered} \mathrm{DC} \\ 1.5 \mathrm{~V} \text { to } 3.5 \mathrm{~V} \end{gathered}$
41		Horizontal AFC 1 Filter Pin : - Horizontal synchrous signal and IC internal pulse phase difference is compared. At Pin41, a capacitor is connected for charging and discharging current - R1, R2, C1, C2, are lag-lead filter used by AFC 1	DC typ. 4.3 V

Pin Equivalent Circuit (continued)

Pin No.	Equivalent circuit	Function	Status
42		Horizontal Oscillator Pin : - Oscillates by $32 \times \mathrm{f}_{\mathrm{H}}=500 \mathrm{kHz}$ ceramic resonator - Horizontal and vertical pulses are made by the IC internal count down circuit	$\begin{gathered} \mathrm{AC} \\ \mathrm{f}=32 \mathrm{f}_{\mathrm{H}} \\ \text { (about } \\ 500 \mathrm{kHz} \text {) } \end{gathered}$
43		Over Voltage Protection Input Pin : - Input pin is used by X-ray protector circuit for over voltage - By internal logic circuit, when H out pulse is low, shut down starts (Prevent damaging the horizontal drive transistor)	$\begin{gathered} \mathrm{DC} \\ \text { usually } \\ 0 \mathrm{~V} \end{gathered}$
44		Horizontal Pulse Output Pin : - Duty is about 37 \%	
45		Vertical Frequency Detection Output Pin : - The output of the result of the internal counter of the vertical synchronous signal period $\begin{aligned} \bullet \cdot \mathrm{f}_{\mathrm{V}} & =60 \mathrm{~Hz}: \mathrm{V} 45 \text { is "H" } \\ & =50 \mathrm{~Hz}: \mathrm{V} 45 \text { is "L" } \end{aligned}$	$\begin{gathered} \mathrm{DC} \\ 0 \mathrm{~V} \\ \text { or } \\ 5 \mathrm{~V} \end{gathered}$

Pin Equivalent Circuit (continued)

Pin No.	Equivalent circuit	Function	Status
46		Vertical Pulse Output Pin : - Nagative polarity pulse width is 10 H	
47		SECAM Interface Pin : - The input and output pin for the interfacing with the SECAM IC - When above $100 \mu \mathrm{~A}$ current is drawn from Pin47, system becomes SECAM mode - When in non-SECAM, $\mathrm{DC} 4.6 \mathrm{~V}+\mathrm{AC} 300 \mathrm{mV}_{\mathrm{PP}}$ - When in non-SECAM, $\begin{aligned} & \text { DC } 1.3 \mathrm{~V}+\mathrm{AC} 300 \mathrm{mV}_{\mathrm{PP}}: 4.43 \mathrm{MHz} \\ & \text { or } 0 \mathrm{mV}_{\mathrm{PP}}: 3.58 \mathrm{MHz} \end{aligned}$	$\mathrm{AD}+\mathrm{DC}$ AC $300 \mathrm{mV}_{\mathrm{PP}}$ or $0 \mathrm{mV}_{\mathrm{PP}}$ DC 4.6 V or 1.3 V
48 49		Pin48:-(B-Y)Output Pin Pin49:-(R-Y)Output Pin - when in SECAM, output circuit is off and output impedance is high impedance - The outputs to 1 HDL	

Pin Equivalent Circuit (continued)
Pin No.

Application Circuit Example

Technical Information

- Package Allowable Loss

- Outline of major blocks
- Video
(1) Y delay line built-in : total delay time is approximately 690 ns .
(2) Sharpness control is by using delay line aperture control. (contour emphasis type)

Together with black level extention circuit, high quality picture is achieved.
(3) Chroma trap is built-in : Trap frequency is synchronised with the chroma VCO frequency at $4.43 \mathrm{MHz} / 3.58$ MHz automatically. By $\mathrm{I}^{2} \mathrm{C}$ bus, the trap can be forced to by-pass. In SECAM mode, about 4.43 MHz free run frequency is obtained. When in black \& white(B/W)mode(killer"On"), the trap is automatically by-passed.
(4) Pedestal clamp filter is built-in.
(5) Service switch : (Y contrast min., Vertical output stop). Can be switched by $\mathrm{I}^{2} \mathrm{C}$ bus.
(6) Chart showing the modes of the trap :

System $\left(\mathrm{f}_{\mathrm{C}}\right)$	Color or B/W	Trap Status
$4.43 \mathrm{MHz}(\mathrm{PAL})$	Color	4.43 MHz
	B / W	4.43 MHz free-run
	Color	3.58 MHz
SECAM	B / W	3.58 MHz free-run
	Color	4.43 MHz free-run
Forced manual mode by $\mathrm{I}^{2} \mathrm{C}$ bus	B / W	4.43 MHz free-run
Forced through mode by I ${ }^{2} \mathrm{C}$ bus	-	About 5.5 MHz

- Chroma
(1) Using base-band 1 H delay line(external 1HDL IC required), adjustment free is achieved.
(2) $\operatorname{BPF}(4.43 \mathrm{MHz} / 3.58 \mathrm{MHz})$, ACC filters are built-in, thus external components are reduced.
(3) By changing the following mode using the $\mathrm{I}^{2} \mathrm{C}$ bus:

1. PAL/NTSC
2. $4.43 \mathrm{MHz} / 3.58 \mathrm{MHz}$
3. Forced PN/Forced SECAM
and together with the SECAM IC for automatic SECAM detection, multi-system application is possible.

Technical Information (continued)

- Outline of major blocks (continued)
- Chroma (continued)
(4) Killer output pin is available for system identification by MICOM.
(Killer"On" $\rightarrow 0 \mathrm{~V}$: Either color signal is not properly detected due to wrong system settig, or the color signal field strength is too weak.
Killer"Off" $\rightarrow 5 \mathrm{~V}$: Color signal is properly detected.)
When killer is on, according to the MICOM control sequence, the mode and VCO frequency will be switched by means of the $\mathrm{I}^{2} \mathrm{C}$ bus.
(5) During SECAM, the color difference output pins are put into high impedance.
(6) AN5344(color-compensation IC)and other types of feature IC can be connected because color difference input pins are available.
(7) It is possible for South American set application.
(three-normal system : NTSC M,PAL M,PAL N).

Note) For PAL M, crystal MEIDEN $3575 \& \mathrm{C}=18 \mathrm{pF}$ are used.
For PAL N, crystal MEIDEN 3012-M \& C $=22 \mathrm{pF}$ are used.
In order to extend downwards the β curve, a capacitor of 2 pF to 4 pF is added between Pin7 and GND.
(8) PAL/NTSC, SECAM interface(Pin 47)

Input Signal	DC	f_{C}	AC Level
4.43 MHz	about 1.3 V	4.43 MHz	$300 \mathrm{mV}_{\mathrm{PP}}$
3.58 MHz	about 1.3 V	X	X
SECAM $^{* 1}$	about 4.6 V	4.43 MHz	$300 \mathrm{mV}_{\mathrm{PP}}$
B/W ${ }^{* 2}$	about 1.3 V	-	$300 \mathrm{mV}_{\mathrm{PP}}$

Note) $* 1: 4.43 \mathrm{MHz}$ AC component is output during vertical retrace period, is as shown below.

Note) $* 2$: Eventhough the MICOM switches the VCO between 4.43 MHz and 3.58 MHz , only the 4.43 MHz CW will be outputed at periodic intervals as shown below.

Technical Information (continued)

- Outline of major blocks (continued)
- RGB
(1) OSD is made up of 3 colors of RGB, by using simple analog input, of which input at 0 V is fixed at the pedestal level.(The input dynamic range is controllable by contrast)
(2) White balance(drive, cutoff)adjustment is implemented by $I^{2} \mathrm{C}$ bus.
(3) Spot killer is built-in : When power supply is off, R, G, B, output levels increase, the residue spot that is visible on the CRT is eliminated.
- Jungle
(1) 2-pin are used for synchronous inputs(Horizontal, Vertical)to improve the synchronisation characteristics of horizontal and vertical synchronisation.
(2) The horizontal circuit is based on countdown method using a $32 \mathrm{f}_{\mathrm{H}}$ ceramic oscillator.

AFC circuit is employing the doubler method.
(3) The vertical circuit is employing the trigger method's countdown circuit, thereby resulting in no adjustment and stable vertical synchronisation. The pulse output will not be interfered by interlace which is caused by pattern layout.
(4) Vertical frequency identification circuit is built-in : the output of $50 / 60 \mathrm{~Hz}$ identification is determined according to the vertical synchronous frequency. $(60 \mathrm{~Hz} \rightarrow$ " H ")
Below 45 Hz and above 65 Hz , the previous state is hold. After 3 consecutive vertical period, if 60 or 50 Hz is identifield, the initial output will be changed.

(5) Horizontal lock detection circuit and X-ray protection circuit(Shut down method)are built-in.
(6) Picture centre position is adjustable by $\mathrm{I}^{2} \mathrm{C}$ bus. $(\pm 1.6 \mu \mathrm{~s})$
(7) In the case of blue back in a weak field, the vertical trigger can be in off mode($\mathrm{I}^{2} \mathrm{C}$ bus).

Thus a stable picture is maintained.

- $\mathrm{I}^{2} \mathrm{C}$ Bus
(1) There are 15 built-in DAC controls and 13 built-in switches to reduce adjustment for set maker.
(2) Auto-increment function present :
- Sub address 0*: Auto-increment mode
(When the data is sent in consecutive order, the sub-address will be changed in consecutive order, as data is inputed)
- Sub address 8^{*} : Data refresh mode
(When the data is sent consecutively, it is sent to the same sub-address)
(3) $I^{2} \mathrm{C}$ Bus Protocol
- Slave address : 10001010(8AH)
- Format(Usual)

- Auto-increment mode/Data refresh mode

| S | Slave address | 0 | A | Sub address | A | Data 1 | A | Data 2 | A | $\left(\begin{array}{c}\text { Data } \mathrm{n} \\ \mathrm{A}\end{array}\right.$ | P |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

(4) Because DAC initial condition is not guaranteed, during power on, it is necessary to input the required standard data.

Technical Information (continued)

- Outline of major blocks (continued)
- $\mathrm{I}^{2} \mathrm{C}$ Bus Addressing

Sub Address	Data Byte							
	D7	D6	D5	D4	D3	D2	D1	D0
$\begin{gathered} 00 \\ (40 \mathrm{H}) \end{gathered}$	$\underset{(0 \rightarrow \mathrm{P})}{\mathrm{P} / \mathrm{N}}$				Color			
$\begin{gathered} 01 \\ (40 \mathrm{H}) \end{gathered}$	$\begin{gathered} \mathrm{PN} / \mathrm{S} \\ (0 \rightarrow \mathrm{PN}) \end{gathered}$				Tint			\rightarrow
$\begin{gathered} 02 \\ (80 \mathrm{H}) \end{gathered}$					Brightness			\rightarrow
$\begin{gathered} 03 \\ (40 \mathrm{H}) \end{gathered}$	$\underset{(0 \rightarrow \mathrm{Off})}{\mathrm{SSW}}$				Contrast			\rightarrow
$\begin{gathered} 04 \\ (\mathrm{~A} 0 \mathrm{H}) \end{gathered}$	$\begin{gathered} \text { Ext. DAC2 } \\ (1 \rightarrow \text { typ. }) \end{gathered}$		\longleftarrow		Sharpness			\rightarrow
$\begin{gathered} 05 \\ (80 \mathrm{H}) \end{gathered}$	\longleftarrow				Cutoff R			\rightarrow
$\begin{gathered} 06 \\ (40 \mathrm{H}) \end{gathered}$	4				Cutoff G			\rightarrow
$\begin{gathered} 07 \\ (80 \mathrm{H}) \end{gathered}$					Cutoff B			\rightarrow
$\begin{gathered} 08 \\ (80 \mathrm{H}) \end{gathered}$	4				Drive R			\rightarrow
$\begin{gathered} 09 \\ (80 \mathrm{H}) \end{gathered}$					Drive B			\rightarrow
$\begin{gathered} 0 \mathrm{~A} \\ (88 \mathrm{H}) \end{gathered}$			Video adjust				H center	\rightarrow
$\begin{gathered} 0 \mathrm{~B} \\ (01 \mathrm{H}) \end{gathered}$					External DAC2			\rightarrow
$\begin{gathered} 0 \mathrm{C} \\ (40 \mathrm{H}) \end{gathered}$	SECAM Enable $(0 \rightarrow$ enable $)$				External DAC1			\rightarrow
$\begin{gathered} \text { 0D } \\ (40 \mathrm{H}) \end{gathered}$					External DAC3			\rightarrow
$\begin{gathered} 0 \mathrm{E} \\ (01 \mathrm{H}) \end{gathered}$	$\begin{gathered} \text { Ver. trig } \\ \text { stop } \\ (0 \rightarrow \text { normal }) \end{gathered}$	Auto trap ($0 \rightarrow$ auto)	$\begin{gathered} \text { Cut off } \\ \text { B } \\ (0 \rightarrow \text { typ. }) \end{gathered}$	$\begin{gathered} \text { Cut off } \\ R \\ (0 \rightarrow \text { typ. }) \end{gathered}$	$\begin{aligned} & \text { Ver. OSC } \\ & (0 \rightarrow 50) \end{aligned}$	Ver. Auto trap ($0 \rightarrow$ auto)	$\begin{gathered} \text { Chroma } \\ \text { trap } \\ (0 \rightarrow \text { normal }) \end{gathered}$	$\begin{gathered} \text { Chroma } \\ \text { VCO } \\ (1 \rightarrow 4.43) \end{gathered}$

Note) Items in the brackets are initial conditions.

Technical Information (continued)

- Outline of major blocks (continued)
- $I^{2} \mathrm{C}$ Bus Control Contents

1. For the Control information, for all sub-address, when data goes up, output increases.
(Example : Contrast $00 \rightarrow$ contrast min., $7 \mathrm{~F} \rightarrow$ contrast max., Brightness $00 \rightarrow$ pedestal low, $\mathrm{FF} \rightarrow$ pedestal high)
2. Other control supplementary
(1) 00 : Color

When Color data is 00 , chroma output is completely cutoff so that color is off.
(2) 01 : Tint

When tint data is 00 , the skin color approaches red.When tint data is 7 F , the skin color approaches green.
(3) 05, 06, 07 (8-bit)and 0ED4, 0ED5(1-bit) : cutoff R, G, B

The cutoff controllable range has increased resolution with 1 extra bit and is segmented into 2 sub-section, each section is variable by 8 -bit DAC.
(Cutoff G is 1 section of 8 -bit DAC, that has the same variable range as R, B)

Example : Case of R cutoff

(4) 08, 09 : Drive R, B

8-bit DAC 1 section(no switching of sub-section).
(5) 0A : Video Adjust

Data $0^{*} \rightarrow$ composite video min. $\mathrm{F}^{*} \rightarrow$ composite video max. This control is used to adjust the composite video level.
(6) 0A : Horizontal Centre

Data $* 0 \rightarrow$ picture moves left. $* \mathrm{~F} \rightarrow$ picture moves right.
(7) 0B : External DAC2 and 04 D7

External DAC2 has 8-bits DAC of 2 sections adjustment.
Data $01 \rightarrow$ DC voltage shifts down.
Data FF \rightarrow DC voltage shifts up.
(8) 0C : External DAC1

Data $00 \rightarrow$ DC voltage shifts down.
Data 7F \rightarrow DC voltage shifts up.
(9) 0D : External DAC3

Data $00 \rightarrow$ DC voltage shifts down.
Data 7F \rightarrow DC voltage shifts up.

Technical Information (continued)

- Outline of major blocks (continued)
- Switch Operation

Data Bit	SW Contents	Detail Contents
00-D7	PAL/NTSC mode switch $\begin{aligned} & (0 \rightarrow \text { PAL }) \\ & (1 \rightarrow \text { NTSC }) \end{aligned}$	- Choroma signal delay line correction(PAL : short) - BGP width change(PAL : wide) - CW switch to killer(PAL : 90/270 deg) - Tint operation change(PAL : Tint off) - Ident operation change(PAL : Operating)
01-D7	PAL, NTSC/SECAM mode switch ($0 \rightarrow$ normal detection mode) ($1 \rightarrow$ forced SECAM mode)	- Demodulator Output mode switch In forced SECAM, color difference pin $(48,49)$ become high impedence.
03-D7	SSW(Service switch) ($0 \rightarrow$ normal) ($1 \rightarrow$ Service mode)	- When in Service mode (1 H line white balance adjust) Vertical output pulse stop(DC about 4.3 V) Y output off, Chroma output present
04-D6	Not used	
04-D7	External DAC2 ($0 \rightarrow$ no offset) ($1 \rightarrow$ offset)	- For External DAC2 2 section adjustment
0C-D7	SECAM enable switch ($0 \rightarrow$ normal) ($1 \rightarrow$ forced disable SECAM)	- SECAM error detection prevention switch $1 \rightarrow$ non-SECAM,SECAM detection input condition (Pin47)will not be received
0D-D7	Not used	
0E-D0	$\begin{aligned} & \text { Chroma VCO switch } \\ & (0 \rightarrow 3.58 \mathrm{MHz}) \\ & (1 \rightarrow 4.43 \mathrm{MHz}) \end{aligned}$	- Chroma oscillator circuit switch (video circuit trap frequency also switch)
0E-D1	Chroma trap switch ($0 \rightarrow$ Trap present) ($1 \rightarrow$ Through)	- Video circuit's chroma trap switch (Y signal phase shift when through)
0E-D2	Vertical auto switch ($0 \rightarrow$ Auto switch) ($1 \rightarrow$ Manual switch)	- Vertical frequency detection circuit switch Auto switch : Auto detection mode by internal counter Manual switch : Depending on 0E-D3 data to force into 50 or 60 Hz mode.
0E-D3	Vertical oscillator switch $\begin{gathered} (0 \rightarrow 50 \mathrm{~Hz}) \\ (1 \rightarrow 60 \mathrm{~Hz}) \end{gathered}$	- Vertical frequency switch Only effective if 0E-D2 data is 1
0E-D4	Cutoff R ($0 \rightarrow$ no offset) ($1 \rightarrow$ offset)	- Used to switch the cutoff R between 2 section
0E-D5	Cutoff B ($0 \rightarrow$ no offset) ($1 \rightarrow$ offset)	- Used to switch the cutoff B between 2 section

Technical Information (continued)

- Outline of major blocks (continued)
- Switch Operation (continued)

Data Bit	SW Contents	Detail Contents
0E-D6	Trap auto switch	• Auto switch : Moves with chroma oscillating frequency.
	$(0 \rightarrow$ Auto switch $)$	Frequency fixed : fixed at about 5.7 MHz
	$(1 \rightarrow$ frequency fixed $)$	
0E-D7	Vertical trigger stop switch $(0 \rightarrow$ normal $)$	• Switch for prevention of vertical trigger input $1 \rightarrow$ trigger off $)$

New Package Dimensions (Unit: mm)

- SDIP052-P-0600F (Lead-free package)

Request for your special attention and precautions in using the technical information and semiconductors described in this book

(1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.
(2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products, and no license is granted under any intellectual property right or other right owned by our company or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information described in this book.
(3) The products described in this book are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances). Consult our sales staff in advance for information on the following applications:

- Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
- Any applications other than the standard applications intended.
(4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
(5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment.
Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.
(6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages.
(7) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of Matsushita Electric Industrial Co., Ltd.

