

Product Features

- Stratum 3 performance with hold-over stabillity (0.32 ppm) over industrial temperature range (-40 °C to +85 °C)
- 3.0 V, 3.3 V and 5.0 V versions
- Wide frequency range 8-52 MHz
- Low phase noise
- Excellent G-Sensitivity performance: 1.5 ppb/G
- Tri-state Function

Product Description

MtronPTI's M610x Series TCXO's and TCVCXO's provide network and wireless engineers with low voltage, surface mount products with tight stability over temperature and time. MtronPTI's unique approach to crystal compensation enables these devices to achieve full Stratum 3 temperature stability including holdover over -40 C to +85 C. Specially processed crystals enable the M610x to achieve consistent long-term stability and minimal frequency shift after reflow. Our processing also enables us to achieve excellent g-sensitivity (1.5 ppb/g). The low phase noise (-155 dBc/Hz at 100 kHz) makes the M610x ideal for those design engineers working on high data-rate, low BER data communication network products.

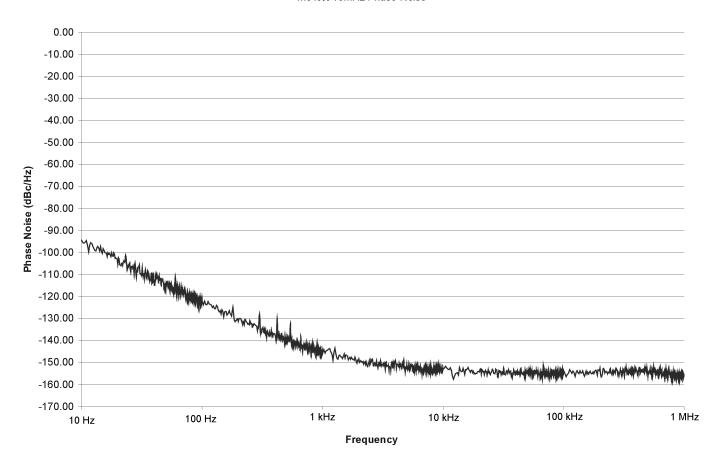
Product Applications

The M610x Series is ideally suited for a wide range of applications such as SONET, SDH, SERDES, GSM, CDMA, 3G, 4G, Gig-Ethernet, 10G and 40G systems. Standard output for the M610x series is HCMOS compatible or clipped sinewave and draws as little as 1.5 mA with a 3.3 volt supply at 13 MHz. This low power consumption provides an advantage over similarly specified ovenized oscillators for power-sensitive applications. The M610x series offers ±9.2 ppm minimum pull range with excellent tuning linearity performance for critical PLL applications. This series is available in frequencies from 8 to 52 MHz, and is offered in a ceramic surface mount platform with industry standard 5 x 7 mm footprint.

Product Ordering Information

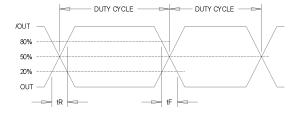
Ordering Information M610x	1 5	s т	ç	00.0000 N MHz
Product Series M6100: 5.0 V M6101: 3.3 V M6102: 3.0 V				
Temperature Range 1: 0°C to +70°C 8: 0°C to +50°C 2: -40°C to +85°C F: -30°C to +75°C 6: -20°C to +70°C	J			
Stability S: ±4.6 ppm w/ Holdover]		
Output Type T: Voltage Controlled With Tristate (VCTCXO) F: No Voltage Control With Tristate (TCXO)				
Output Waveform C: HCMOS S: Clipped Sine Wave				
Package/Lead Configurations ———— N: Leadless Ceramic				J
Frequency (customer specified)				

M6100Sxxx, M6101Sxxx & M6102Sxxx - Contact factory for datasheets.


Performance Characteristics

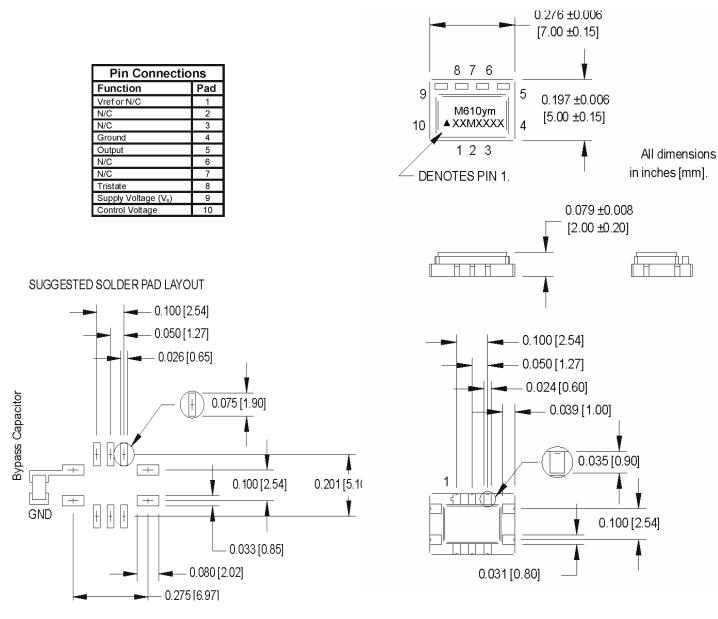
$ \begin{array}{ $		Parameter	Symbol	Min.	Тур.	Conditions/Notes				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Frequency Range	Fo	8		MHz				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Operating Temperature	T _A	-40		+85	°C	See Ordering Information		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			T _{STG}	-55		+125	°C			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Frequency Tolerance @ +25°C				+1.0	ppm			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Frequency Stability		-0.28		+0.28	ppm	Stability vs. Temperature		
Stability Vs. Reflow						+4.6	ppm			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				-0.32		+0.32	ppm			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								operating temperature		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				-1.0		+1.0				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							Î			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					±0.2					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				-5.0						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Supply Current (I _D)								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										
Waveform Symmetry 40 60 % Ref. to ½ Vs. HCMOS only Rise/Fall Time 8 ns Ref. to ½ Vs. HCMOS only Output Load 15 pF HCMOS output Output Load 10/10 Kohm/pF Clipped sinewave output Frequency Adjustment ±9.2 ppm Over Control Voltage Range Control Voltage Range 0.3 2.7 Volts For Vs = 3.0 Input Leakage Current -50 +50 µA Pad 10 Input Leakage Current -50 +50 µA Pad 10 Linearity 3 % Output disabled. Logic "1" or "Oper Modulation Bandwidth 2 kHz Pad 10 Tristate Leakage Current -100 +100 µA Pad 8 Phase Noise -95 dBc/Hz 10 Hz Offset 00 Hz Offset (Typical 10 MHz CMOS) -125 dBc/Hz 10 Hz Offset 10 KHz Offset -155 dBc/Hz 10 kHz Offset 10 kHz Offset 10 kHz Offset 10 kHz Offset <td>l su</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	l su									
Waveform Symmetry 40 60 % Ref. to ½ V _S HCMOS only Bise/Fall Time 8 ns Ref. to ½ V _S HCMOS only Rise/Fall Time 8 ns Ref. to ½ V _S HCMOS only Output Load 15 pF HCMOS output 10/10 Kohm/pF Clipped sinewave output Frequency Adjustment ±9.2 ppm Over Control Voltage Range 0.3 3.0 Volts For V _S = 3.0 Control Voltage Range 0.3 3.0 Volts For V _S = 3.0 5.0 Input Leakage Current -50 +50 µA Pad 10 10 Input Resistance 100 Kohm Pad 10 10 10 10 Linearity 3 % 0 30 %V _S Output disabled. Logic "1" or "Oper Tristate Function (Pad 8) 70 %V _S Output disabled. Logic "1" or "Oper 30 %V _S Output disabled. Logic "0" or "GNE Tristate Leakage Current -100 +100 µA Pad 8 10 <td< td=""><td>lij</td><td></td><td></td><td></td><td>3.0</td><td>Ť</td><td></td><td></td></td<>	lij				3.0	Ť				
Waveform Symmetry 40 60 % Ref. to ½ Vs. HCMOS only Rise/Fall Time 8 ns Ref. to ½ Vs. HCMOS only Output Load 15 pF HCMOS output Output Load 10/10 Kohm/pF Clipped sinewave output Frequency Adjustment ±9.2 ppm Over Control Voltage Range Control Voltage Range 0.3 2.7 Volts For Vs = 3.0 Input Leakage Current -50 +50 µA Pad 10 Input Leakage Current -50 +50 µA Pad 10 Linearity 3 % Output disabled. Logic "1" or "Oper Modulation Bandwidth 2 kHz Pad 10 Tristate Leakage Current -100 +100 µA Pad 8 Phase Noise -95 dBc/Hz 10 Hz Offset 00 Hz Offset (Typical 10 MHz CMOS) -125 dBc/Hz 10 Hz Offset 10 KHz Offset -155 dBc/Hz 10 kHz Offset 10 kHz Offset 10 kHz Offset 10 kHz Offset <td>li</td> <td></td> <td></td> <td></td> <td></td> <td>20</td> <td>-</td> <td></td>	li					20	-			
Waveform Symmetry 40 60 % Ref. to ½ Vs. HCMOS only Rise/Fall Time 8 ns Ref. to ½ Vs. HCMOS only Output Load 15 pF HCMOS output Output Load 10/10 Kohm/pF Clipped sinewave output Frequency Adjustment ±9.2 ppm Over Control Voltage Range Control Voltage Range 0.3 2.7 Volts For Vs = 3.0 Input Leakage Current -50 +50 µA Pad 10 Input Leakage Current -50 +50 µA Pad 10 Linearity 3 % Output disabled. Logic "1" or "Oper Modulation Bandwidth 2 kHz Pad 10 Tristate Leakage Current -100 +100 µA Pad 8 Phase Noise -95 dBc/Hz 10 Hz Offset 00 Hz Offset (Typical 10 MHz CMOS) -125 dBc/Hz 10 Hz Offset 10 KHz Offset -155 dBc/Hz 10 kHz Offset 10 kHz Offset 10 kHz Offset 10 kHz Offset <td>ŝ</td> <td></td> <td>V_{OH}</td> <td></td> <td></td> <td></td> <td></td> <td></td>	ŝ		V _{OH}							
Waveform Symmetry 40 60 % Ref. to ½ V _S HCMOS only Bise/Fall Time 8 ns Ref. to ½ V _S HCMOS only Rise/Fall Time 8 ns Ref. to ½ V _S HCMOS only Output Load 15 pF HCMOS output 10/10 Kohm/pF Clipped sinewave output Frequency Adjustment ±9.2 ppm Over Control Voltage Range 0.3 3.0 Volts For V _S = 3.0 Control Voltage Range 0.3 3.0 Volts For V _S = 3.0 5.0 Input Leakage Current -50 +50 µA Pad 10 10 Input Resistance 100 Kohm Pad 10 10 10 10 Linearity 3 % 0 30 %V _S Output disabled. Logic "1" or "Oper Tristate Function (Pad 8) 70 %V _S Output disabled. Logic "1" or "Oper 30 %V _S Output disabled. Logic "0" or "GNE Tristate Leakage Current -100 +100 µA Pad 8 10 <td< td=""><td>۳ ۳</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	۳ ۳									
Image: space spa	a									
Image: space spa	l::			40			1			
Image: space spa	ec.		<u> </u>		15	8				
Frequency Adjustment ± 9.2 ppmOver Control Voltage RangeControl Voltage Range0.32.7VoltsFor $V_S = 3.0$ 0.33.0VoltsFor $V_S = 3.3$ 0.54.5VoltsFor $V_S = 5.0$ Input Leakage Current-50+50 μA Input Resistance100KohmPad 10Linearity3%Modulation Bandwidth2kHzPad 1070%V_STristate Function (Pad 8)70Tristate Leakage Current-100+100 μA Pad 8Phase Noise-95(Typical 10 MHz CMOS)-125dBc/Hz10 Hz Offset-155dBc/Hz100 kHz Offset-155dBc/Hz100 kHz Offset100 kHz Offset100 kHz Offset100 kHz Offset100 kHz Offset100 kHz Offset110 kHz Offset1110 kHz Offset11 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Eroquonov Adjustment		+0.2	10/10		1			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			l			27				
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Control voltage Range						-		
Input Leakage Current-50+50µAPad 10Input Resistance100KohmPad 10Linearity3%Modulation Bandwidth2KHzPad 10Tristate Function (Pad 8)70%VsOutput enabled. Logic "1" or "OperTristate Leakage Current-100+100µAPad 8Phase Noise-95dBc/Hz10 Hz Offset(Typical 10 MHz CMOS)-125dBc/Hz100 Hz Offset-155dBc/Hz10 KHz Offset-155100 KHz Offset										
Input Resistance 100 Kohm Pad 10 Linearity 3 % Modulation Bandwidth 2 kHz Pad 10 Tristate Function (Pad 8) 70 %V _S Output enabled. Logic "1" or "Oper Tristate Leakage Current -100 +100 µA Pad 8 Phase Noise -95 dBc/Hz 10 Hz Offset (Typical 10 MHz CMOS) -125 dBc/Hz 10 Hz Offset -145 dBc/Hz 10 KHz Offset -152 -155 dBc/Hz 10 KHz Offset		Input Leakage Current								
Linearity 3 % Modulation Bandwidth 2 kHz Pad 10 Tristate Function (Pad 8) 70 %Vs Output enabled. Logic "1" or "Oper Tristate Leakage Current -100 +100 µA Pad 8 Phase Noise -95 dBc/Hz 10 Hz Offset (Typical 10 MHz CMOS) -125 dBc/Hz 100 Hz Offset -145 dBc/Hz 10 KHz Offset -152 -155 dBc/Hz 10 KHz Offset										
Modulation Bandwidth 2 kHz Pad 10 Tristate Function (Pad 8) 70 %V _S Output enabled. Logic "1" or "Oper 30 %V _S Output disabled. Logic "0" or "GNE Tristate Leakage Current -100 +100 µA Pad 8 Phase Noise -95 dBc/Hz 10 Hz Offset (Typical 10 MHz CMOS) -125 dBc/Hz 100 Hz Offset -145 dBc/Hz 10 KHz Offset -152 dBc/Hz 10 KHz Offset 100 -155 dBc/Hz 100 kHz Offset				100		3		Fau To		
Tristate Function (Pad 8) 70 %Vs Output enabled. Logic "1" or "Oper Tristate Leakage Current -100 +100 µA Pad 8 Phase Noise -95 dBc/Hz 10 Hz Offset (Typical 10 MHz CMOS) -145 dBc/Hz 100 Hz Offset -155 dBc/Hz 10 KHz Offset				2		- Ŭ		Pad 10		
Tristate Leakage Current -100 +100 µA Pad 8 Phase Noise -95 dBc/Hz 10 Hz Offset (Typical 10 MHz CMOS) -125 dBc/Hz 100 Hz Offset -145 dBc/Hz 1 KHz Offset -152 dBc/Hz 10 KHz Offset 155 dBc/Hz 100 kHz Offset										
Tristate Leakage Current-100+100µAPad 8Phase Noise-95dBc/Hz10 Hz Offset(Typical 10 MHz CMOS)-125dBc/Hz100 Hz Offset-145dBc/Hz1 KHz Offset-152dBc/Hz1 KHz Offset-155dBc/Hz10 KHz Offset-100-155dBc/Hz						30	-			
Phase Noise -95 dBc/Hz 10 Hz Offset (Typical 10 MHz CMOS) -125 dBc/Hz 100 Hz Offset -145 dBc/Hz 1 KHz Offset -152 dBc/Hz 1 KHz Offset -155 dBc/Hz 10 KHz Offset		Tristate Leakage Current		-100						
(Typical 10 MHz CMOS) -125 dBc/Hz 100 Hz Offset -145 dBc/Hz 1 KHz Offset -152 dBc/Hz 10 KHz Offset -155 dBc/Hz 10 KHz Offset				100	-95	100	1			
-145 dBc/Hz 1 KHz Offset -152 dBc/Hz 10 KHz Offset -155 dBc/Hz 100 kHz Offset										
-152 dBc/Hz 10 KHz Offset -155 dBc/Hz 100 kHz Offset										
-155 dBc/Hz 100 kHz Offset										
	\vdash				-100		UDC/HZ			
LE Shook MIL STD 202 Method 212 Condition C 100 a	tal	Shook		02 Motho	d 212 Co		100 a			
Shock MIL-STD-202, Method 213, Condition C 100 g Vibration MIL-STD-202, Methods 201 & 204 10 g from 10 to 2000 Hz Solderability EIAJ-STD-002 RoHS Compliant Package 5.0 x 7.0 x 2.0 mm, 10-pad SMT RoHS Compliant	len							100 g		
EVibrationMIL-STD-202, Methods 201 & 204To gifter to to 2000 HzSolderabilityEIAJ-STD-002	۲ ۲			,	us 201 & 2	204				
Package 5.0 x 7.0 x 2.0 mm, 10-pad SMT RoHS Compliant	l i	ř.			0 pad SM	т		PoHS Compliant		
Package 5.0 x 7.0 x 2.0 mm, 10-pad SMT RoHS Compliant	<u></u>]									
Imax Soldering Conditions See solder profile, Figure 1 HCMOS Load – see load circuit diagram #2. Sinewave Load – see load circuit diagram #7.		-			-					

HCMOS Load – see load circuit diagram #2. Sinewave Load – see load circuit diagram #7.



Phase Noise Plot

M610x 10MHz Phase Noise


Output Waveform

1П

Product Dimension & Pinout Information

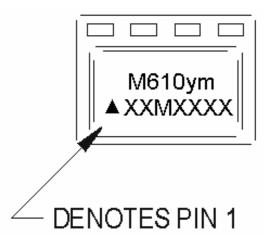
Handling Information

Although protection circuitry has been designed into the M610x oscillator, proper precautions should be taken to avoid exposure to electrostatic discharge (ESD) during handling and mounting. MtronPTI utilizes a human-body model (HBM) and a charged-device model (CDM) for ESD-susceptibility testing and protection design evaluation. ESD voltage thresholds are dependent on the circuit parameters used to define the mode. Although no industry-wide standard has been adopted for the CDM, a standard HBM (resistance = 1500 Ω , capacitance = 100 pF) is widely used and therefore can be used for comparison purposes. The HBM ESD threshold presented here was obtained using these circuit parameters.

Model ESD Threshold, Minimum		Unit
Human Body	1500*	V
Charged Device	1500*	V

* MIL-STD-833D, Method 3015, Class 1

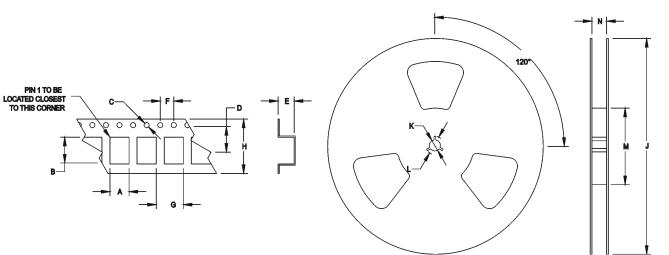
Quality Parameters


Environmental Specifications/Qualification Testing Performed on the M610x TCXO/TCVCXO

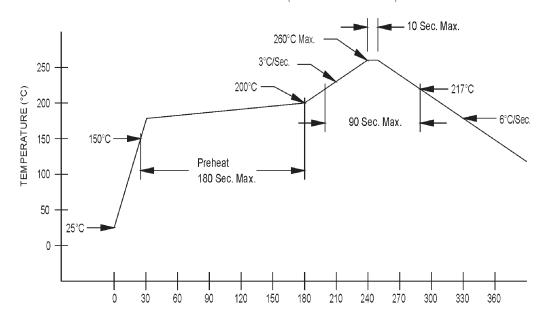
Test	Test Method	Test Condition
Electrical Characteristics	Internal Specification	Per Specification
Frequency vs. Temperature	Internal Specification	Per Specification
Mechanical Shock	MIL-STD-202, Method 213, C	100 g, 6 ms
Vibration	MIL-STD-202, Method 201-204	10 g from 10-2000 Hz
Thermal Cycle	MIL-STD-883, Method 1010, B	-55 Deg. C to +125 Deg. C, 15 minute Dwell, 10 cycles
Aging	Internal Specification	168 Hours at 105 Degrees C
Gross Leak	MIL-STD-202, Method 112	30 Second Immersion
Fine Leak	MIL-STD-202, Method 112	Must meet 1x10 ⁻⁸
Solderability	MIL-STD-883, Method 2003	8 Hour Steam Age – Must Exhibit 95% coverage
Resistance to Solvents	MIL-STD-883, Method 2015	Three 1 minute soaks
Terminal Pull	MIL-STD-883, Method 2004, A	2 Pounds
Lead Bend	MIL-STD-883, Method 2004, B1	1 Bending Cycle
Physical Dimensions	MIL-STD-883, Method 2016	Per Specification
Internal Visual	Internal Specification	Per Internal Specification

Part Marking Guide

Line 1: Indicates part family, year, month of production


Line 2: Indicates frequency

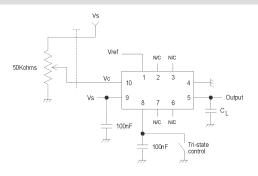
Tape & Reel Specifications


(all measurements are in mm)	Α	В	С	D	E	F	G	н	J	К	L	М	N
M610x	5.40	7.40	1.55	7.50	2.60	2.00	4.00	16.00	330	13.00	20.20	100	16.40

Standard Tape and Reel: 1000 parts per reel

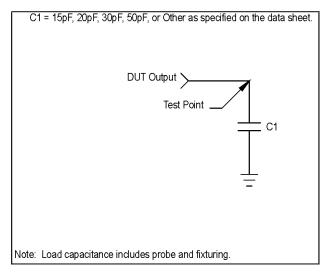
Maximum Soldering Conditions

+260°C REFLOW PROFILE (RoHS COMPLIANT SOLDER)



Solder Conditions

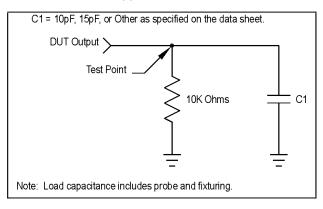
Note: Exceeding these limits may damage the device.



Typical Test Circuit

Load Circuit

Load Circuit #2 - HCMOS


Product Revision Table

Date	Revision	PCN Number	Details of Revision

For custom products or additional specifications contact our sales team at 800.762.8800 (toll free) or 605.665.9321

For more information on this product visit the MtronPTI website at www.mtronpti.com

Load Circuit #7 - Clipped Sinewave TCXO/TCVCXO

