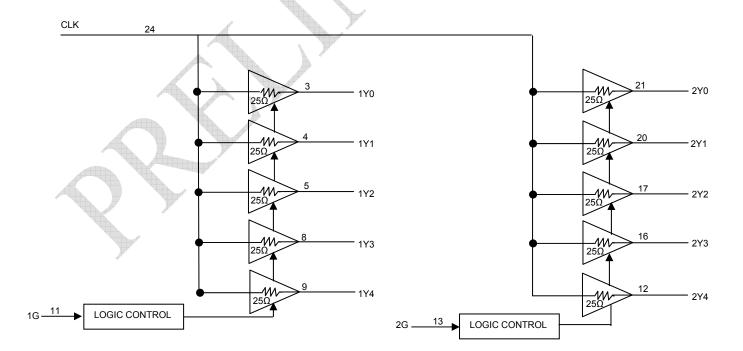
rev 0.3

ASM2P2310A

2.5-V TO 3.3-V High-Performance Clock Buffer


Features

- High-Performance 1:10 Clock Driver for General Purpose applications. Operates up to 200 MHz at 3.3V Supply Voltage
- Pin-to-Pin Skew < 100 pS at 3.3V Supply Voltage
- Supply Range : 2.3V to 3.6V
- Operating Temperature Range : -40°C to 85°C
- Output Enable Glitch Suppression
- Distributes One Clock Input to Two Banks of Five Outputs
- 25Ω On Chip Series Damping Resistors
- Packaged in 24 Pin TSSOP Package

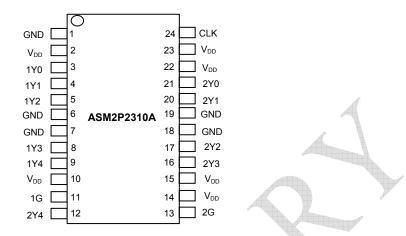
Product Description

The ASM2P2310A is a high-performance, low-skew clock buffer that operates up to 200MHz. Two banks of five outputs each provide low-skew copies of CLK. After power up, the default state of the outputs is low regardless of the state of the control pins. For normal operation, the outputs of bank 1Y[0:4] or 2Y[0:4] can be placed in a low state when the control pins (1G or 2G, respectively) are held low and a negative clock edge is detected on the CLK input. The outputs of bank 1Y[0:4] or 2Y[0:4] can be switched into the buffer mode when the control pins (1G and 2G) are held high and a negative clock edge is detected on the CLK input. The device operates in a 2.5V and 3.3V environment. The built-in output enable glitch suppression ensures a synchronized output enable sequence to distribute full period clock signals.

The ASM2P2310A is characterized for operation from -40°C to 85°C.

PulseCore Semiconductor Corporation 1715 S. Bascom Ave Suite 200, Campbell, CA 95008 • Tel: 408-879-9077 • Fax: 408-879-9018 www.pulsecoresemi.com

Block Diagram


Notice: The information in this document is subject to change without notice.

ASM2P2310A

November 2006

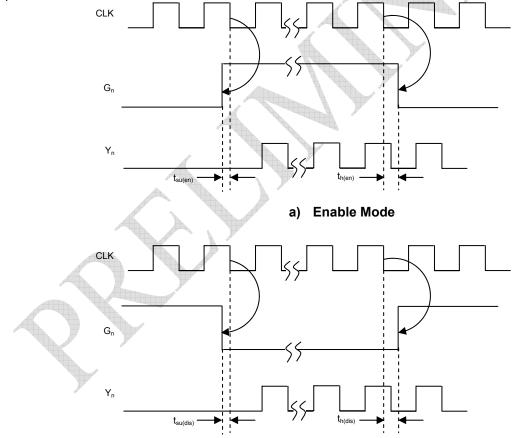
rev 0.3 Pin Configuration

Pin Description

Pin #	Pin Name	Туре	Description
1	GND	Р	Ground Pin
2	V _{DD}	Р	DC Power supply, 2.3 V – 3.6V
3	1Y0	0	Buffered Output Clock
4	1Y1	0	Buffered Output Clock
5	1Y2	0	Buffered Output Clock
6	GND	Р	Ground Pin
7	GND	Р	Ground Pin
8	1Y3	0	Buffered Output Clock
9	1Y4	0	Buffered Output Clock
10	V _{DD}	Р	DC power supply, 2.3V – 3.6V
11	1G		Output enable control for 1Y[0:4] outputs. This output enable is active-high, meaning the 1Y[0:4] clock outputs follow the input clock (CLK) if this pin is logic high.
12	2Y4	0	Buffered Output Clock
13	2G		Output enable control for 2Y[0:4] outputs. This output enable is active-high, meaning the 2Y[0:4] clock outputs follow the input clock (CLK) if this pin is logic high.
14	V _{DD}	Р	DC power supply, 2.3V – 3.6V
15	VDD	P	DC power supply, 2.3V – 3.6V
16	2Y3	0	Buffered Output Clock
17	2Y2	0	Buffered Output Clock
18	GND	Р	Ground Pin
19	GND	Р	Ground Pin
20	2Y1	0	Buffered Output Clock
21	2Y0	0	Buffered Output Clock
22	V _{DD}	Р	DC power supply, 2.3V – 3.6V
23	V _{DD}	Р	DC power supply, 2.3V – 3.6V
24	CLK	Ι	Input reference frequency

rev 0.3

Function Table


Input			Output				
1G	2G	CLK	1Y[0:4]	2Y[0:4]			
L	L	\downarrow	L	L			
Н	L	\downarrow	CLK ¹	A			
L	Н	\downarrow	L	CLK ¹			
Н	Н	\downarrow	CLK ¹	CLK ¹			
Note: 1 After detecting	Note: 1 After detecting one negative edge on the CLK input, the output follows the input CLK if the control pin is held high.						

Detailed Description

Output Enable Glitch Suppression Circuit

The purpose of the glitch suppression circuitry is to ensure the output enable sequence is synchronized with the clock input such that the output buffer is enabled or disabled on the next full period of the input clock (negative edge triggered by the input clock) (see Figure 1).

The G input must fulfill the timing requirements (t_{su} , t_h) according to the Switching Characteristics table for predictable operation.

b) Disable Mode Figure 1. Enable and Disable Mode Relative to CLK \downarrow

rev 0.3

Absolute Maximum Ratings

Parameter	Rating
Supply Voltage range, V _{DD}	-0.5V to 4.6V
Input Voltage range, VI ^{1,2}	-0.5 V to V _{DD} + 0.5 V
Output Voltage range, V ₀ ^{1,2}	-0.5 V to V _{DD} + 0.5 V
Continuous total output current, I_0 (V _o = 0 to V _{DD})	±50 mA
Package thermal impedance, θ_{JA}^{3} : PW package	120°C/W
Storage temperature range T _{stg}	-65°C to 150°C
Static Discharge Voltage , t _{DV} (As per JEDEC STD22- A114-B)	2KV
Note: These are stress ratings only and are not implied for functional use. Exposure to absolute device reliability.	maximum ratings for prolonged periods of time may affect

Notes :

1 The input and output negative voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2 This value is limited to 4.6 V maximum.

3 The package thermal impedance is calculated in accordance with JESD 51.

Recommended Operating Conditions¹

	Parameter	Min	Тур	Max	Unit	
Supply voltage, V _{DD}		2.3	2.5		V	
			3.3	3.6	v	
Low-level input voltage, V _{IL}	V _{DD} = 3V to 3.6V			0.8	v	
Low-level input voltage, vi	V _{DD} = 2.3V to 2.7V			0.7	v	
High-level input voltage, V _{IH}	V _{DD} = 3V to 3.6V	2			v	
	V _{DD} = 2.3V to 2.7V	1.7			v	
Input voltage, V _I		0		V_{DD}	V	
High-level output current, I _{OH}	V _{DD} = 3V to 3.6V			12	mA	
	V _{DD} = 2.3 V to 2.7V			6		
Low-level output current, Io	$V_{DD} = 3V$ to 3.6V			12	mA	
	V _{DD} = 2.3V to 2.7V			6		
Operating free-air temperature	, T _A	-40		85	°C	
Note:1 Unused inputs must be held hig	h or low to prevent them from floating.					

ASM2P2310A

rev 0.3

Electrical Characteristics

Over recommended operating free-air temperature range (unless otherwise noted)

Symbol	Parameter	Test C	onditions	Min	Typ ¹	Max	Unit	
VIK	Input voltage	$V_{DD} = 3V,$	l _l = -18 mA			-1.2	V	
I _I	Input current	$V_{I} = 0V \text{ or } V_{DD}$				±5	μA	
I_{DD}^2	Static device current	$CLK = 0V \text{ or } V_{DD},$	I ₀ = 0 mA			80	μA	
CI	Input capacitance	V _{DD} = 2.3V to 3.6V,	$V_{I} = 0V \text{ or } V_{DD}$		2.5		pF	
Co	Output capacitance	V _{DD} = 2.3V to 3.6V,	$V_I = 0V \text{ or } V_{DD}$		2.8		pF	
Note: 1 All typical values are at respective nominal V _{DD} . 2 For I _{CC} over frequency, see Figure 6.								

V_{DD} = 3.3 V ±0.3 V

Symbol	Parameter	Test C	onditions	Min	Typ ¹	Max	Unit
		V _{DD} = Min to Ma	ix, I _{OH} = -100 μA	V _{DD} - 0.2			
V _{OH}	High-level output voltage	V _{DD} = 3 V	I _{OH} = -12 mA	2.1			V
		VDD - 3 V	I _{ОН} = -6 mA	2.4			
		V _{DD} = Min to Ma	ux, I _{OL} = -100 μA			0.2	
V _{OL}	Low-level output voltage		I _{OL} = 12mA			0.8	V
		V _{DD} = 3V	I _{OL} = 6 mA			0.55	
		$V_{DD} = 3V,$	V ₀ = 1V	-28			
I _{OH}	High-level output current	$V_{DD} = 3.3V,$	V ₀ = 1.65V		-36		mA
		$V_{DD} = 3.6V,$	V ₀ = 3.135V			-14	
		$V_{DD} = 3V,$	V _o = 1.95V	28			
I _{OL}	Low-level output current	$V_{DD} = 3.3V,$	V _O = 1.65V		36		mA
		$V_{DD} = 3.6V,$	V _O = 0.4V			14	

V_{DD} = 2.5 V ±0.2 V

Symbol	Parameter	Test Cor	ditions	Min	Typ ¹	Max	Unit	
V _{он}	High-level output voltage	V _{DD} = Min to Max,	I _{OH} = -100 μA	V _{DD} - 0.2			v	
VOH	Tigh-level output voltage	V _{DD} = 2.3V	I _{он} = -6 mA	1.8			v	
VOL	Low-level output voltage	V _{DD} = Min to Max,	I _{OL} = 100 μA			0.2	v	
VOL	Low-level output voltage	V _{DD} = 2.3V	I _{OL} = 6 mA			0.55	v	
Ť		V _{DD} = 2.3V,	$V_0 = 1V$	-17				
I _{ОН}	High-level output current	V _{DD} = 2.5V,	V ₀ = 1.25V		-25		mA	
	<i>¥</i>	V _{DD} = 2.7V,	V _O = 2.375V			-10		
		V _{DD} = 2.3V,	V ₀ = 1.2V	17				
I _{OL}	Low-level output current	V _{DD} = 2.5V,	V _O = 1.25V		25		mA	
		V _{DD} = 2.7V,	V _O = 0.3V			10		
Note: 1 All typ	Note: 1 All typical values are at respective nominal V _{DD} .							

 $\overbrace{}$

rev 0.3

Timing Requirements Over recommended ranges of supply voltage and operating free-air temperature

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
f	Clock froguenov	$V_{DD} = 3 V \text{ to } 3.6 V$	0		200	MHz
Tclk	Clock frequency	V _{DD} = 2.3 V to 2.7V	0		170	

Switching Characteristics

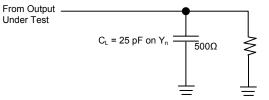
Over recommended operating free-air temperature range (unless otherwise noted)

V_{DD} = 3.3 V ±0.3 V (See Figure 2)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit		
t _{PLH}	CLK to Yn	f = 0 MHz to 200 MHz For circuit load,	1.3		2.8	nS		
t _{PHL}		see Figure 2.						
tsk(o)	Output skew (Ym to Yn) ¹ (see Figure 4)				100	pS		
t sk(p)	Pulse skew (see Figure 5)				250	pS		
tsk(pp)	Part-to-part skew				500	pS		
tr	Rise time (see Figure 3)	$V_0 = 0.4V$ to 2V	0.7		2	V/nS		
t _f	Fall time (see Figure 3)	$V_0 = 2 V \text{ to } 0.4 V$	0.7		2	V/nS		
t su(en)	Enable setup time,G_high before CLK \downarrow		0.1			nS		
tsu(dis)	Disable setup time, G_low before $CLK\downarrow$		0.1			nS		
t h(en)	Enable hold time, G_high after CLK ↓		0.4			nS		
th(dis)	Disable hold time, G_low after CLK \downarrow		0.4			nS		
Note: 1 The t _{sk(c}	Note: 1 The t _{sk(o)} specification is only valid for equal loading of all outputs							

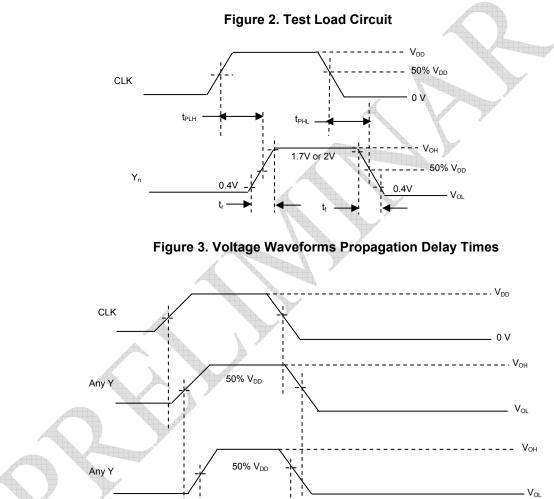
V_{DD} = 2.5 V ±0.2 V (See Figure 2)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit								
t _{PLH}	CLK to Yn	f = 0MHz to 170MHz For circuit load,	1.5		3.5	nS								
t _{PHL}		see Figure 2.												
tsk(o)	Output skew (Ym to Yn) ¹ (see Figure 4)				170	pS								
tsk(p)	Pulse skew (see Figure 5)				400	pS								
tsk(pp)	Part-to-part skew				600	pS								
tr	Rise time (see Figure 3)	$V_0 = 0.4V$ to 1.7V	0.5		1.4	V/nS								
t _f	Fall time (see Figure 3)	V _O = 1.7V to 0.4V	0.5		1.4	V/nS								
tsu(en	Enable setup time,G_high before CLK↓		0.1			nS								
tsu(dis)	Disable setup time, G_low before CLK↓		0.1			nS								
th(en)	Enable hold time, G_high after CLK ↓		0.4			nS								
th(dis)	Disable hold time, G_low after CLK \downarrow		0.4			nS								
Note: 1 The t _{sk(c}	, specification is only valid for equal loading of all output	ts.	-1		•	ote: 1 The t _{sk(0)} specification is only valid for equal loading of all outputs.								



ASM2P2310A

rev 0.3

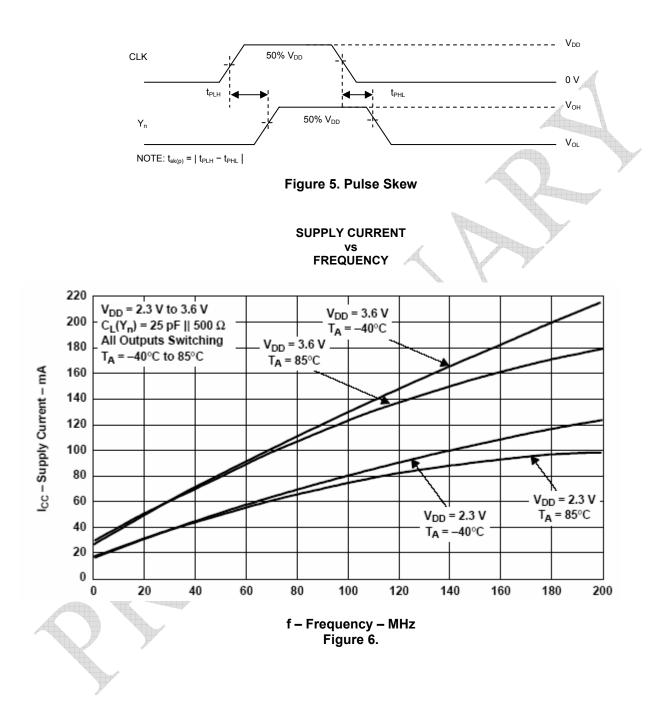

Parameter Measurement Information

t_{SK(O)}

A. C_L includes probe and jig capacitance.

B. All input pulses are supplied by generators having the following characteristics: PRR \leq 200 MHz, Z₀ = 50 Ω , t_r < 1.2 ns, t_r < 1.2 ns,

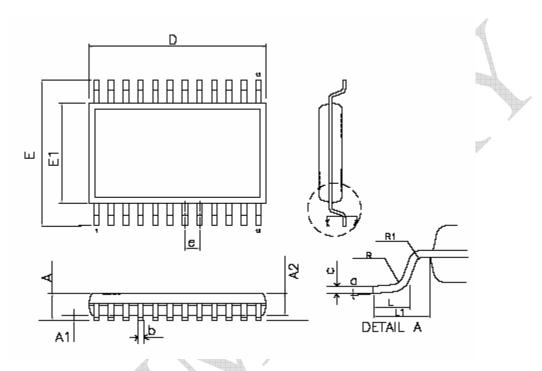
t_{SK(O)}


2.5-V TO 3.3-V High-Performance Clock Buffer

7 of 11

ASM2P2310A

rev 0.3



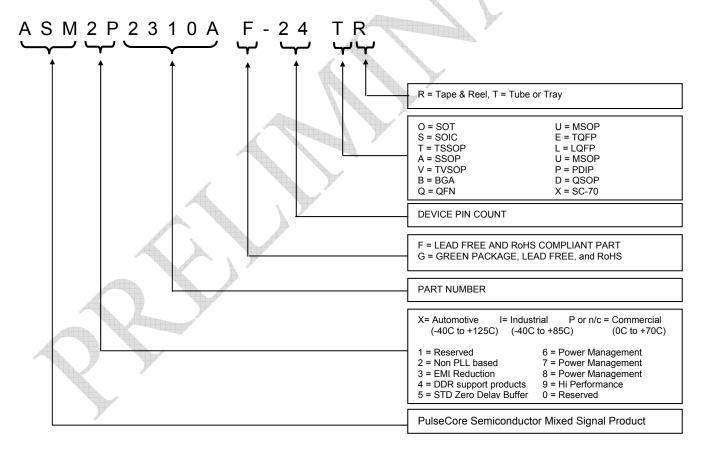
ASM2P2310A

rev 0.3

Package Information

24L TSSOP (173 mil)

		Dimen	sions		
Symbol	Inch	ies	Millim	eters	
	Min	Max	Min	Max	
A		0.043		1.2	
A1	0.0020	0.0059	0.05	0.15	
A2	0.031	0.041	0.80	1.05	
D	0.3031	0.311	7.70	7.90	
L L	0.020	0.030	0.50	0.75	
E	0.252	BSC	6.40	BSC	
E1	0.169	0.177	4.30	4.50	
R	0.004		0.09		
R1	0.004		0.09		
b	0.007	0.012	0.19	0.30	
С	0.004	0.008	0.09	0.20	
L1	0.039	REF	1.0 REF		
е	0.026	BSC	0.65 BSC		
а	0°	8°	0°	8°	



rev 0.3

Ordering Information

Part Number	Marking	Package Type	Temperature
ASM2P2310AF-24TR	2P2310AF	24-Pin TSSOP, TAPE & REEL, Pb Free	Commercial
ASM2P2310AF-24TT	2P2310AF	24-Pin TSSOP, TUBE, Pb Free	Commercial
ASM2P2310AG-24TR	2P2310AG	24-Pin TSSOP, TAPE & REEL, Green	Commercial
ASM2P2310AG-24TT	2P2310AG	24-Pin TSSOP, TUBE, Green	Commercial
ASM2I2310AF-24TR	2I2310AF	24-Pin TSSOP, TAPE & REEL, Pb Free	Industrial
ASM2I2310AF-24TT	2I2310AF	24-Pin TSSOP, TUBE, Pb Free	Industrial
ASM2I2310AG-24TR	2I2310AG	24-Pin TSSOP, TAPE & REEL, Green	Industrial
ASM2I2310AG-24TT	2I2310AG	24-Pin TSSOP, TUBE, Green	Industrial

Device Ordering Information

Licensed under US patent Nos 5,488,627 and 5,631,920.

PulseCore

rev 0.3

PulseCore Semiconductor Corporation 1715 S. Bascom Ave Suite 200 Campbell, CA 95008 Tel: 408-879-9077 Fax: 408-879-9018 www.pulsecoresemi.com Copyright © PulseCore Semiconductor All Rights Reserved Preliminary Information Part Number: ASM2P2310A Document Version: v0.3

Note: This product utilizes US Patent # 6,646,463 Impedance Emulator Patent issued to PulseCore Semiconductor, dated 11-11-2003

© Copyright 2006 PulseCore Semiconductor Corporation. All rights reserved. Our logo and name are trademarks or registered trademarks of PulseCore Semiconductor. All other brand and product names may be the trademarks of their respective companies. PulseCore reserves the right to make changes to this document and its products at any time without notice. PulseCore assumes no responsibility for any errors that may appear in this document. The data contained herein represents PulseCore's best data and/or estimates at the time of issuance. PulseCore reserves the right to change or correct this data at any time, without notice. If the product described herein is under development, significant changes to these specifications are possible. The information in this product data sheet is intended to be general descriptive information for potential customers and users, and is not intended to operate as, or provide, any guarantee or warrantee to any user or customer. PulseCore does not assume any responsibility or liability arising out of the application or use of any product described herein, and disclaims any express or implied warranties related to the sale and/or use of PulseCore products including liability or warranties related to fitness for a particular purpose, merchantability, or infringement of any intellectual property rights, except as express agreed to in PulseCore's Terms and Conditions of Sale (which are available from PulseCore). All sales of PulseCore products are made exclusively according to PulseCore's Terms and Conditions of Sale. The purchase of products from PulseCore does not convey a license under any patent rights, copyrights; mask works rights, trademarks, or any other intellectual property rights of PulseCore or third parties. PulseCore does not authorize its products for use as critical components in life-supporting systems where a malfunction or failure may reasonably be expected to result in significant injury to the user, and the inclusion of PulseCore products in such life-supporting systems implies that the manufacturer assumes all risk of such use and agrees to indemnify PulseCore against all claims arising from such use.