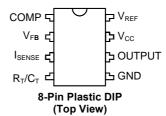


CURRENT MODE PWM CONTROLLER

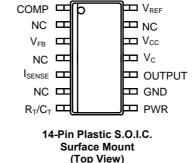
DESCRIPTION

The AMC3842B/43B/44B/45B are fixed frequency current-mode PWM controllers specially designed for OFF-Line switching power supply and DC-to-DC converters with a minimum number of external components. These devices feature a trimmed oscillator for precise duty cycle control, a temperature compensated reference, high gain error amplifier, current sensing comparator, and high current totem pole output which is suitable for driving MOSFETs.

The under voltage lock-out (U.V.L.O.) is designed to operated with $200\mu A$ start-up current in typical, allowing an efficient bootstrap supply voltage design. The U.V.L.O. thresholds for the AMC3842B/44B are 16V (on) and 10V (off), which are ideal for off-line applications. The corresponding typical threshold for the AMC3843/45BB is 8.4V (on) and 7.6V (off). The AMC3842B/43B can operate within 100% duty cycle and the AMC3844B/45B can operate within 50% duty cycle.


FEATURES

- Low Start-Up current (max. 200µA)
- Optimized for Off-Line and DC-to-DC Converters
- **■** Maximum Duty Cycle
- U.V.L.O. with Hysteresis
- Operating Frequency Up to 500KHz
- **■** Internal Trimmed Bandgap Reference
- High Current Totem Pole Output
- **■** Error Amplifier With Low Output Resistance
- Available in 8-Pin Plastic DIP and Surface Mount 14-Pin S.O.I.C.
- Identical pin assignment to earlier UC384X series.


APPLICATIONS

- Off-line flyback or forward converters.
- DC-to-DC buck or boost converter.
- Monitor Power Supply

PACKAGE PIN OUT

AVAILABLE OPTIONS									
Device	Start-UP Voltage	Hysteresis	Max. Duty Cycle						
AMC3842B	16V	6V	< 100%						
AMC3843B	8.4V	0.8V	< 100%						
AMC3844B	16V	6V	< 50%						
AMC3845B	8.4V	0.8V	< 50%						

8-Pin Plastic S.O.I.C. Surface Mount (Top View)

ORDER INFORMATION							
T (°C)	Plastic DIP-8	Plastic SO-14	Plastic SO-8				
T_A ($^{\circ}$ C)	8-pin	14-pin	$- DM \frac{\text{Plastic BO o}}{\text{8-pin}}$				
0 to 70	AMC384XBM	AMC384XBD	AMC384XBDM				
0 to 70 AMC384XBM (Lead Free) AMC384XBD (Lead Free) AMC384XBDM (Lead Free)							
NT . 1 A 11	C . 1 . 11.1.1	TP 0 TP 1 A 1 d 1 49	T"				

All surface-mount packages are available in Tape & Reel. Append the letter "T" to part number (i.e. AMC384XBDT, or AMC384XBDMT).
 The letter "F" is marked for Lead Free process.

ABSOLUTE MAXIMUM RATINGS (Note 1)	
Supply voltage, V _{CC}	35V
Output current, I _O	± 1A
Analog inputs, V _I	-0.3V to 6.3V
Error amp output sink current, I _{SINK(EA)}	10mA
Power dissipation ($T_A = 25$ °C), P_D	1W
Maximum juncture temperature, T _J	150°C
Storage temperature range	-65°C to 150°C
Lead temperature (soldiering, 10 seconds)	260°C
Note 1: Exceeding these ratings could cause damage to the device. All voltages are with respect to Grounegative out of the specified terminal.	nd. Currents are positive into,

THERMAL DATA						
M PACKAGE:						
Thermal Resistance-Junction to Ambient, θ_{JA}	95 °C/W					
D PACKAGE:						
Thermal Resistance-Junction to Ambient, θ_{JA}	120 °C/W					
DM PACKAGE:						
Thermal Resistance-Junction to Ambient, θ_{JA}	165 °C/W					

$$\label{eq:JunctionTemperature} \begin{split} & \text{Junction Temperature Calculation:} \quad T_J = T_A + (P_D \times \theta_{JA}). \end{split}$$
 The θ_{JA} numbers are guidelines for the thermal performance of the device/pc-board system.

All of the above assume no ambient airflow.

BLOCK DIAGRAM 7 (12) Internal Bias **☆** 36V U.V.L.O. 5V ΕN $\mathbf{V}_{\mathsf{REF}}$ 5 (9) GND V_{REF} 8 (14) $/\!\!\!/$ **V**_{REF} Good Logic 7<u>(11</u>) **PWR** Current Vc Error Amp Sense 2R **PWM** 2 (3) R Latch R₹ **OUTPUT** COMP 1 (1) 6 (10) s **CURRENT** 3 (5) **SENSE** Т **PWR** ЛЛ $R_T/C_T = \frac{4(7)}{}$ 5 (8) GND Oscillator

() are 14 Pin S.O.I.C. pin number

- Note 2: V_{CC} and PWR V_{C} are internally connected for 8 pin packages.
- Note 3: PWR GND and GND are internally connected for 8 pin packages.
- Note 4: U.V.L.O. is 16V for 3842B/44B and 8.4V for 3843B/45B.
- Note 5: Hysteresis is 6V for 3842B/44B and 0.8V for 3843B/45B.
- Note 6: Toggle flip flop used only in 3844B/45B

RECOMMENDED OPERATING CONDITIONS								
Domester	G 1 1	Recommended Operating Conditions			T.T., 14.			
Parameter	Symbol	Min.	Тур.	Max.	Units			
Supply Voltage	V_{CC} / V_{C}			30	V			
I (V . I	$V_I,R_T/C_T$	0		5.5	V			
Input Voltage	$V_{\rm I}$, $I_{\rm SENSE}$ / $V_{\rm FB}$	U		5.5	v			
Output Voltage	V _O , Output	0		30	V			
Supply Current	I_{CC}			25	mA			
Average Output Current	I_{O}			200	mA			
Reference Output Current	I _{O(REF)}			-20	mA			
Timing Capacitor	C_{T}	1			nF			
Oscillator Frequency	f_{OSC}		100	500	KHz			
Operating Free-air Temperature	T_{A}	0		70	°C			

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, these specifications apply over the operating ambient temperature for AMC384XB with $0^{\circ}\text{C} \leq T_{A} \leq 70^{\circ}\text{C}$; $V_{CC} = 15\text{V}$ (note 7); $R_{T} = 10\text{K}$; $C_{T} = 3.3\text{nF}$. Low duty cycle pulse testing techniques are used which maintains junction and case temperatures equal to the ambient temperature.

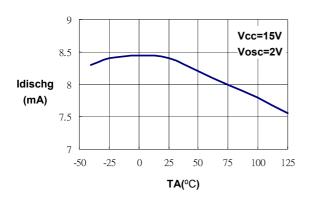
Processed and	G1 1	Total Constitutions	AMC384XB			Units
Parameter	Symbol Test Conditions		Min.	Тур.	Max.	Units
Reference Section						
Reference output Voltage	V_{REF}	$T_J = 25$ °C, $I_{REF} = 1 \text{mA}$	4.9	5.0	5.1	V
Line Regulation		$12V \le V_{CC} \le 25V, T_J = 25$ °C		6	20	mV
Load Regulation		$1mA \le I_{REF} \le 20mA$		6	25	mV
Short Ciruit Output Current	I_{SC}	$T_J = 25$ °C	-30	-100	-180	mA
Oscillator Section						
Oscillation Frequency	f	$T_J = 25$ °C	47	52	57	KHz
Frequency Change with Voltage		$12V \le V_{CC} \le 25V$		0.2	1.0	%
Frequency Change with Temperature (note 8)		$T_{MIN} \le T_A \le T_{MAX}$		5		%
Peak-to-peak Amplitude At R _T /C _T	V _{osc}			1.7		V
Current Sense Section	Current Sense Section					
Gain (note 9 & 10)	A_{VOL}		2.85	3.00	3.15	V/V
Maximum Input Signal (note 9)	$V_{I(MAX)}$	COMP = 5V	0.9	1.0	1.1	V
Power Supply Rejection Ratio (note 9)	PSRR	$12V \le V_{CC} \le 25V \text{ (note 9)}$		70		dB
Input Bias Current	I_{BIAS}			-3.0	-10	μΑ

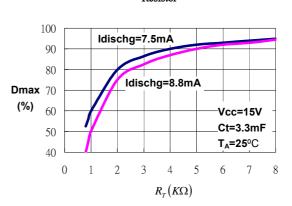
RICAL (CHARACTERISTICS (Continued	l)				
I_{BIAS}			-0.1	-2	μΑ	
V _{I(EA)}	COMP = 2.5V	2.42	2.50	2.58	V	
Gvo	$2V \le V_O \le 4V$	65	90		dB	
UGBW	$T_J = 25$ °C	0.7	1		MHz	
PSRR	$12V \le V_{CC} \le 25V$	60	70		dB	
I _{SINK}	$V_{FB} = 2.7V$, $COMP = 1.1V$	2	7		mA	
I _{SOURCE}	$V_{FB} = 2.3V$, $COMP = 5.0V$	-0.5	-1.0		mA	
V_{OH}	$V_{FB} = 2.3V$, $R_L = 15K\Omega$ to GND	5	6		V	
V _{OL}	$V_{FB} = 2.7V$, $RL = 15K\Omega$ to V_{REF}		0.7	1.1	V	
V	$I_{SINK} = 20mA$		0.1	0.4	V	
V _{OL}	$I_{SINK} = 200 \text{mA}$		1.4	2.2 V		
Vou	$I_{SOURCE} = 20 \text{mA}$	13	13.5		V	
	$I_{SOURCE} = 200 \text{mA}$	12	13.0		v	
t _r	$T_{\rm J} = 25^{\rm o}{\rm C}, {\rm C_{\rm L}} = 1{\rm nF}$		50	150	ns	
Fall Time (note 9) t _f			50	150	ns	
V	AMC3842B/44B	14.5	16.0	17.5	V	
V _{TH(ST)}	AMC3843B/45B	7.8	8.4	9.0	V	
	AMC3842B/44B	8.5	10	11.5	V	
	AMC3843B/45B	7.0	7.6	8.2	v	
Danasa	AMC3842B/43B	94	97	100	0/	
Dmax	AMC3844B/45B	47		50	%	
	,		,	,		
	AMC3842B/44B			0.2	А	
	AMC3843B/45B			0.2	mA	
I_{CC}	$V_{FB} = I_{SENSE} = 0V$		14	17	mA	
V_{Z}	$I_{CC} = 25 \text{mA}$	30	35		V	
	$\begin{array}{c} I_{BIAS} \\ V_{I(EA)} \\ G_{VO} \\ UGBW \\ PSRR \\ I_{SINK} \\ I_{SOURCE} \\ V_{OH} \\ V_{OL} \\ \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c }\hline I_{BIAS} & & & & -0.1 & -2 \\ V_{I(EA)} & COMP = 2.5V & 2.42 & 2.50 & 2.58 \\ \hline G_{VO} & 2V \leq V_O \leq 4V & 65 & 90 \\ \hline UGBW & T_J = 25^{\circ}C & 0.7 & 1 \\ \hline PSRR & 12V \leq V_{CC} \leq 25V & 60 & 70 \\ \hline I_{SINK} & V_{FB} = 2.7V, COMP = 1.1V & 2 & 7 \\ \hline I_{SOURCE} & V_{FB} = 2.3V, COMP = 5.0V & -0.5 & -1.0 \\ \hline V_{OH} & V_{FB} = 2.3V, R_L = 15K\Omega \text{ to GND} & 5 & 6 \\ \hline V_{OL} & V_{FB} = 2.7V, RL = 15K\Omega \text{ to V}_{REF} & 0.7 & 1.1 \\ \hline \hline V_{OH} & I_{SINK} = 20mA & 0.1 & 0.4 \\ \hline I_{SOURCE} = 20mA & 13 & 13.5 \\ \hline I_{SOURCE} = 200mA & 12 & 13.0 \\ \hline t_r & T_J = 25^{\circ}C, C_L = 1nF & 50 & 150 \\ \hline t_f & T_J = 25^{\circ}C, C_L = 1nF & 50 & 150 \\ \hline \hline V_{TH(ST)} & AMC3842B/44B & 14.5 & 16.0 & 17.5 \\ \hline AMC3842B/44B & 8.5 & 10 & 11.5 \\ \hline AMC3842B/44B & 8.5 & 10 & 11.5 \\ \hline AMC3842B/44B & 8.5 & 10 & 11.5 \\ \hline AMC3842B/44B & 8.5 & 10 & 11.5 \\ \hline AMC3842B/44B & 94 & 97 & 100 \\ \hline AMC3842B/44B & 94 & 97 & 100 \\ \hline AMC3842B/44B & 94 & 48 & 50 \\ \hline Dmax & AMC3842B/44B & 0.2 \\ \hline AMC3842B/44B & 0.2 \\ \hline AMC3843B/45B & 0.2 \\ \hline AMC3842B/44B & 0.2 \\ \hline AMC3842B/44B & 0.2 \\ \hline AMC3843B/45B & 0.2 \\ \hline AMC3842B/44B & 0.2 \\ \hline AMC3843B/45B & 0.2 \\ \hline AMC3843B/45B & 0.2 \\ \hline AMC3842B/44B & 0.2 \\ \hline AMC3843B/45B & 0.2 \\ $	

Note 7: Adjust V_{CC} above the start threshold before setting at 15V

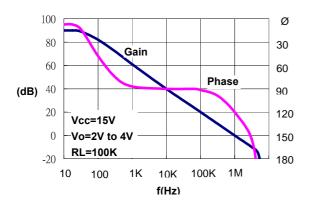
Note 8: These parameters, although guaranteed, are not 100% tested in production prior to shipment

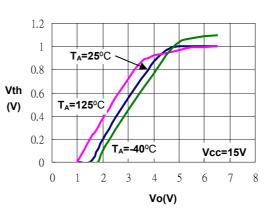
Note 9: Parameters are measured at trip point of latch with $V_{FB} = 2V$

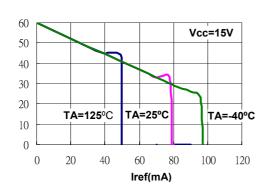

Note 10: Gain is measured between I_{SENSE} and COMP with the input changing from 0V to 0.8V

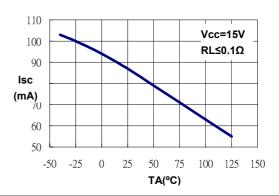

CHARACTERIZATION CURVES

Below characterization curves was referenced by Fig.4


Oscillator Discharge Current vs.
Temperature


Maximum Output Duty Cycle vs. Timing Resistor


Error Amp Open-Loop Gain and Phase vs. Frequency


Current Sense Input Threshold vs. Error Amp Output Voltage.

Reference Voltage Change vs. Source Current.

Reference Short Circuit Current vs.
Temperature.

APPLICATION INFORMATION

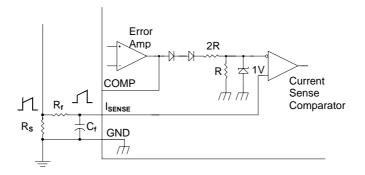
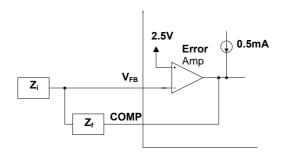
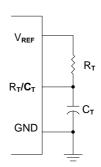




Fig. 1. Current Sense Circuit

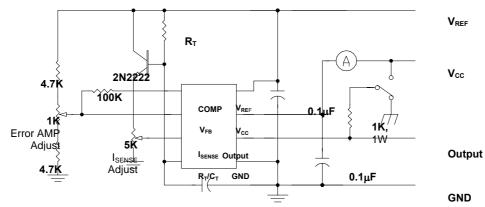
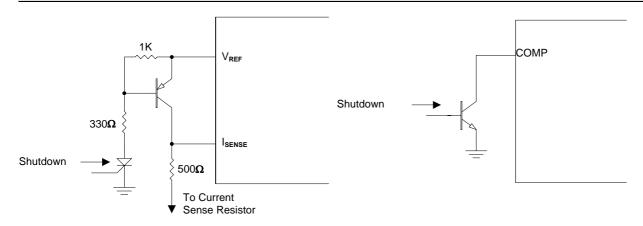
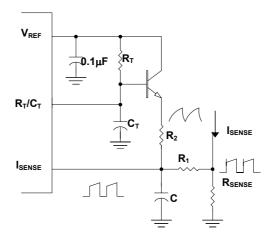

Peak current (I_S) is set by: $I_{S(MAX)} = 1V/R_S$

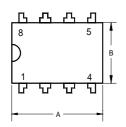
Fig. 2. Error Amplifier Configuration - the amplifier can source or sink up to 0.5mA

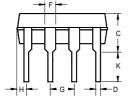

Fig. 3. Oscillator Section For $R_T < 5K$, $f = \frac{1.72}{R_T C_T}$


Fig. 4. Open-loop laboratory test fixture: Careful grounding techniques are necessary for high peak currents associated with capacitive loads. Timing and bypass capacitors should be connected to GND pin in a single point ground. The transistor and 5K potentiometer are used to sample the oscillator waveform and apply an adjustable ramp to the I_{SENSE} pin

APPLICATION INFORMATION (continued)

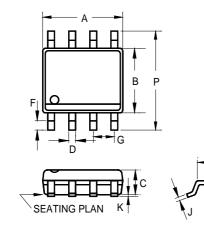
Fig. 5. Shutdown Techniques - there are two ways to shutdown the PWM controller: 1) raise the voltage at I_{SENSE} above 1V or, 2) pull the COMP below a voltage two diodes above ground.

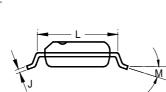



Fig 6. Slop Compensation – To achieve duty cycles over 50% for some applications, the above slope compensation technique is suggested by resistively summing a fraction of the oscillator ramp with the current sense signal.

PACKAGE

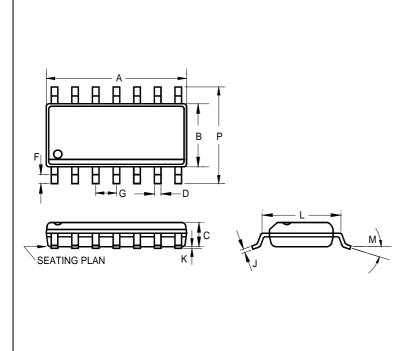
8-Pin Plastic DIP





	I	NCHES	3	MILLIMETERS		
	MIN	TYP	MAX	MIN	TYP	MAX
Α	0.355	0.365	0.400	9.02	9.27	10.16
В	0.240	0.250	0.280	6.10	6.35	7.11
С	-	0.200	0.210	-	5.08	5.33
D	0.014	0.018	0.022	0.356	0.46	0.55
F	0.045	0.060	0.065	1.15	1.52	1.65
G	-	0.100	-	-	2.54	-
Н	0.050	ı	0.090	1.27	ı	2.29
J	0.008	0.010	0.015	0.20	0.25	0.38
K	0.115	0.130	0.150	2.92	3.30	3.81
L	0.	300 BS	C.	7	.62 BS0	D
М	00	7º	15º	00	0° 7° 15	

8-Pin Plastic S.O.I.C.



	ı	NCHES	3	MIL	LIMETE	RS	
	MIN	TYP	MAX	MIN	TYP	MAX	
Α	0.183	-	0.202	4.65	-	5.13	
В	0.144	0.156	0.163	3.66	3.95	4.14	
С	0.068	-	0.074	1.35	-	1.88	
D	0.010	0.016	0.020	0.25	0.41	0.51	
F	0.015	0.020	0.035	0.38	0.50	0.89	
G	0.050 BSC			1.27 BSC			
J	0.007	-	0.010	0.19	-	0.25	
K	0.005	-	0.010	0.13	-	0.25	
L	0.189	-	0.205	4.80	-	5.21	
М	00	-	8º	0°	-	8º	
Р	0.228	0.236	0.244	5.79	6.00	6.20	

14-Pin Plastic S.O.I.C.

	I	NCHES	6	MILLIMETERS			
	MIN	TYP	MAX	MIN	TYP	MAX	
Α	0.336	ı	0.344	8.54	-	8.74	
В	0.159	ı	0.158	3.81	ı	4.01	
С	0.053	ı	0.069	1.35	ı	1.75	
D	0.014	ı	0.018	0.35	ı	0.46	
F	0.026	ı	0.030	0.67	ı	0.77	
G	0.050 BSC			1.27 BSC			
J	0.007	ı	0.010	0.19	ı	0.25	
K	0.004	ı	0.010	0.10	ı	0.25	
L	0.189	ı	0.205	4.82	-	5.21	
М	-	-	8º	-	-	8º	
Р	0.228	-	0.244	5.79	-	6.20	

IMPORTANT NOTICE

ADDtek reserves the right to make changes to its products or to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

A few applications using integrated circuit products may involve potential risks of death, personal injury, or severe property or environmental damage. ADDtek integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life-support applications, devices or systems or other critical applications. Use of ADDtek products in such applications is understood to be fully at the risk of the customer. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

ADDtek assumes to no liability to customer product design or application support. ADDtek warrants the performance of its products to the specifications applicable at the time of sale.

ADDtek Corp.

9F, No. 20, Sec. 3, Bade Rd., Taipei, Taiwan, 105

TEL: 2-25700299 FAX: 2-25700196