

G S-1W & H S-1W Series

1W, FIXED INPUT, 6000V ISOLATED&UNREGULATED **DUAL/SINGLE OUTPUT DC-DC CONVERTER**

multi-country patent protection RoHS

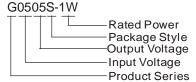
FEATURES

6KVDC Isolation SIP Package

Temperature Range: -40°C to +85°C

No Heat sink Required Low Isolation Capacitance Internal SMD Construction Industry Standard Pinout **RoHS** Compliance

APPLICATIONS


The G_S-1W & H_S-1W Series are specially designed for applications where a group of polar power supplies are isolated from the input power supply in a distributed power supply system on a circuit board.

These products apply to:

- 1) Where the voltage of the input power supply is fixed (voltage variation ≤ ±10%);
- 2) Where isolation is necessary between input and output (isolation voltage ≤6000VDC);
- 3) Where the regulation of the output voltage and the output ripple noise are not demanding.

Such as: purely digital circuits, ordinary low frequency analog circuits, and IGBT power device driving circuits.

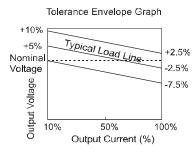
MODEL SELECTION

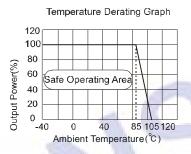
MORNSUN Science & Technology co., Ltd. Address: 2th floor 6th building, Hangzhou Industrial District, Guangzhou, China Tel: 86-20-38601850 Fax: 86-20-38601272 http://www.mornsun-power.com

PRODUCT F	PROGRA	\M				
	Input		Output			
Part Number	Voltag	e (VDC)	Voltage (VDC)	Current (mA)		Efficiency (%, Typ)
	Nominal	Range		Max	Min	(70, 130)
H0505S-1W	5	4.5-5.5	5	200	20	70
H0509S-1W			9	111	12	72
H0512S-1W			12	84	9	73
H0515S-1W			15	67	7	74
G0505S-1W] 3		±5	±100	±10	70
G0509S-1W			±9	±56	±6	72
G0512S-1W			±12	±42	±5	73
G0515S-1W			±15	±33	±4	75
H1205S-1W		10.8-13.2	5	200	20	70
H1209S-1W			9	111	12	71
H1212S-1W			12	84	9	72
H1215S-1W	12		15	67	7	74
G1205S-1W	12		±5	±100	±10	70
G1209S-1W	300		±9	<u>+</u> 56	±6	71
G1212S-1W			±12	±42	±5	72
G1215S-1W			±15	±33	±4	75
Note: G/H_S-1W	Series:UL-6	60950-1 Pen	ding.			

ISOLATION SPECIFICATIONS							
Item	Test Conditions	Min	Тур	Max	Units		
Isolation voltage	Tested for 1 minute and 1mA max	6000			VDC		
Isolation resistance	Test at 500VDC	1000			ΜΩ		
Isolation capacitance				10	pF		

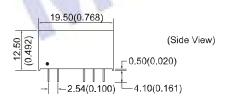
OUTPUT SPECIF	Test Conditions			Тур	Max	Units
Output power	Took Containent		Min 0.1	.,,,,	1	W
Line regulation	For Vin change of 1%				±1.2	%
-	10% to 100% load (5V output)			12.8	15	%
Landan milation	10% to 100% load (9V output)			8.3	15	
Load regulation	10% to 100% load (12V output)			6.8	15	
	10% to 100% load (15V output)			6.3	15	
Output voltage accuracy	See tolerance envelope graph					
Temperature drift	100% full load				0.03	%/°C
Ripple & Noise*	20MHz Bandwidth			150	200	mVp-p
Contabina francia	Full load,	(5V input)		250		1/1.1-
Switching frequency	nominal input	(12V input)		50		KHz


*Test ripple and noise by "parallel cable" method. See detailed operation instructions at Testing of Power Converter section, application notes.

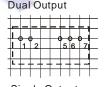

- 1. All specifications measured at TA=25°C, humidity<75%, nominal input voltage and rated output load unless otherwise specified.
- 2. Dual output models unbalanced load: ±5%.

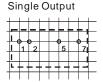
COMMON SPECIFICATIONS						
Item	Test conditions	Min	Тур	Max	Units	
Storage humidity range				95	%	
Operating temperature		-40		85		
Storage temperature		-55		125	°c	
Lead temperature	1.5mm from case for 10 seconds			300		
Temp. rise at full load			15	25		
Chart aircuit protection*	5V input voltage			1	second	
Short circuit protection*	12V input voltage	Continuous				
Cooling	oling Free air conve		onvectio	n		
Case material	material Plastic(UL94-		JL94-V0))		
MTBF		3500			K hours	
Weigh			4.2		g	

*When input voltage (Nominal) is 5V, Supply voltage must be discontinued at the end of short circuit duration.


TYPICAL CHARACTERISTICS

OUTLINE DIMENSIONS & PIN CONNECTIONS





Note: Unit:mm(inch) Pin section:0.50*0.30mm(0.020*0.012inch) Pin tolerances:±0.10mm(±0.004inch) General tolerances:±0.25mm (±0.010inch)

First Angle Projection 🕣 🕀

RECOMMENDED FOOTPRINT Top view, grid:2.54mm(0.1inch) diameter:1.00mm(0.039inch)

FOOTPRINT DETAILS

Pin Singles Duals

1 Vin Vin

2 GND GND

0V

No Pin

+Vo

-Vo

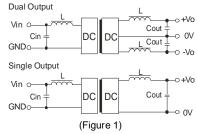
0V

+Vo

5

6

7

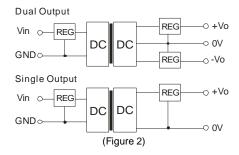

APPLICATION NOTE

Requirement on output load

To ensure this module can operate efficiently and reliably, During operation, the minimum output load is **not less than 10%** of the full load, and that **this product should never be operated under no load!** If the actual output power is very small, please connect a resistor with proper resistance at the output end in parallel to increase the load, or use our company's products with a lower rated output power.

Recommended testing and application circuit

If you want to further decrease the input/output ripple, an "LC" filtering network may be connected to the input and output ends of the DC/DC converter, see (Figure 1).


It should also be noted that the inductance and the frequency of the "LC" filtering network should be staggered with the DC/DC frequency to avoid mutual interference. However, the capacitance of the output filter capacitor must be proper. If the capacitance is too big, a startup problem might arise. For every channel of output, provided the safe and reliable operation is ensured, the greatest capacitance of its filter capacitor sees (Table 1).

	EXTERNAL CAPACITOR TABLE (TABLE 1)						
Vin Cin (VDC) (uF)		Single	Cout	Dual	Cout		
		(uF)	Vout	(uF)	Vout	(uF)	
			(VDC)		(VDC)		
	5	4.7	5	10	±5	4.7	
	12	2.2	9	4.7	±9	2.2	
	-	-	12	2.2	±12	2.2	
	_	_	15	1	+15	1	

It's not recommended to connect any external capacitor in the application field with less than 0.5 watt output.

Output Voltage Regulation and Over-voltage Protection Circuit

The simplest device for output voltage regulation, over-voltage and over-current protection is a linear voltage regulator with overheat protection that is connected to the input or output end in series (Figure 2).

Overload Protection

Under normal operating conditions, the output circuit of these products has no protection against overload. The simplest method is to connect a self-recovery fuse in series at the input end or add a circuit breaker to the circuit.

No parallel connection or plug and play.