

PRELIMINARY

Voltage detector with delay

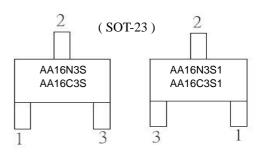
■ **FEATURES**

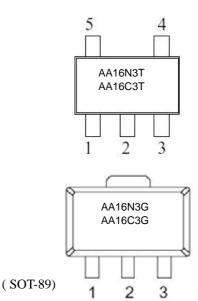
- High accuracy in 5% voltage detection.
- Typical 150mv/200mv hysteresis width between power reset and reset disable detection point for 3.3v and 5v, respectively.
- Low power consumption typical at 1.3uA at Vcc=5v.
- With about 3.5us and 40us delay time at power reset disable and reset procedure.
- Open-Drain output type. (AA16N series)
- Inverter output type. (AA16C series)
- Low temperature coefficient.

APPLICATIONS

- Reset for microprocessor or DSP
- Power failure detector

DESCRIPTION


AA16 Series is a three terminal power reset


generator processed in a standard CMOS. It detects a particle fixed voltage at the power up or down procedure to generate a reset signal for initializing the following systems or devices, such as MCU. There is a typical 150/200mv hysteresis range for different 3.3v/5v system to prevent the system from crashing during power supply fluctuation.

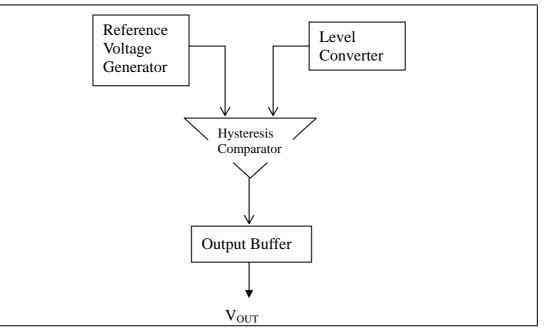
AA16 Series consists of a reference voltage generator, a comparator with hysteresis function and an 'open-drain' type (AA16N series) or 'Inverter' type (AA16C series) output driver. The Volt level of output is flexible to the various application power systems. Low power consumption, typical at 1uA and maximum is lower than 2uA.

AGAMEM MICROELECTRONICS INCOPERATION RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. AGAMEM DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

1

PRELIMINARY

Voltage detector with delay


Symbol	Pin-No	Туре	Function			
Vout	1	0	Power Reset signal output. It's an Open –Drain or Inverter output type. Its output state level like below Reset : Low ; Reset disable : High Impedance			
Vcc	2		Supply Power			
GND	3		Ground			

■ SOT-23、SOT-89 PIN DESCRIPTION

SOT-25 PIN DESCRIPTION

Symbol	Pin-No	Туре	Function
Nc	1	0	Not Connect
Sub	2		substrate
GND	3		Ground
Vout	4		Power Reset signal output. It's an Open –Drain or Inverter output type. Its output state level like below Reset : Low ; Reset disable : High Impedance
Vcc	5		Supply Power

BLOCK DIAGRAM

2007/6/21

PRELIMINARY

Voltage detector with delay

ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS (See NOTE)

Parameter	Shal	Rating			UNIT	CONDITION	
Parameter	Symbol	MIN	ТҮР	MAX	UNII	CONDITION	
Supply Volateg	Vcc	-0.3		7	V		
Output Volatge	V _{OUT}	-0.3		Vcc+0.3	V	$Ta = +25^{\circ}C$; GND = 0V	
Operating Ambient Temperature	Та	-20		70	°C		
Storage Temperature	Ts	-55		125	°C		

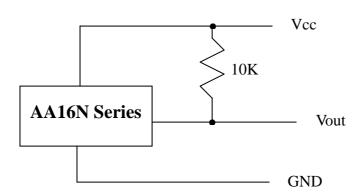
NOTE: Stress above those listed under "Absolute Maximum Rating" may cause the device permanent damage. This is a stress rating only factor and functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for an extending period of time may affect the reliability of the device.

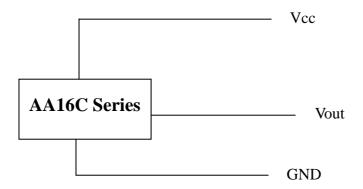
RECOMMENDED OPERATING CONDITIONS						$Ta = 25^{\circ}C$	
Parameter	Symbol	Value			Unit	Condition	
Farameter	Symbol	Min	Тур	Max		Condition	
Power Supply	Vcc	1.5*		6	v		
Supply Current	Icc(3.3V)		1.3	2	uA	Vcc=5V Rload=10K	
Supply Current	Icc(5V)		1	2	uA	vcc=3v kload=10k	
Resat Voltage	$V_{RS}(3.3V)$	2.8		3.1	V	Fig-1; Fig-3	
Reset Voltage	V _{RS} (5V)	4		4.3	V	rig-1, rig-3	
Usatanasia Width	$V_{\rm HS}(3.3V)$	90		210	mV	Fig-2	
Hysteresis Width	V _{HS} (5V)	130		270	mV	rig-2	
Output Low	V _{OL}			0.2	V	I _{OL} =0.7mA ; Vcc=1.8V	
Reset disable Time	T _{RSD}		3.5		uS	RL=100K, CL=100P;	
Deset Times	T _{RS} (3.3v)		44		uS	Measured Voltage = 1.5V	
Reset Time	$T_{RS}(5v)$		40		uS	Fig-1; Fig-3	

* Output can't be described because the system isn't stable when the supply voltage Vcc is less than 1.5V

2007/6/21

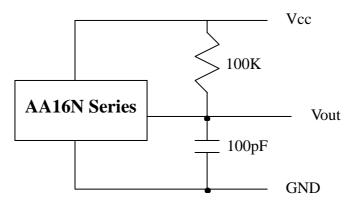
AGAMEM MICROELECTRONICS INCOPERATION RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. AGAMEM DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

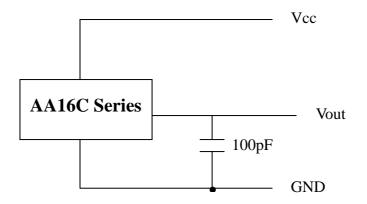

3


PRELIMINARY

Voltage detector with delay

■ SUPPLY CURRENT MEASUREMENT CHART


* Vout is an 'Open-Drain' output type. A resistance between it and Vcc is necessary to pick it up.


* Vout is an 'Inverter' output type. No resistance between it and Vcc.

■ OUTPUT CHARACTERISTIC TESTING CONDITION

* Vout is an 'Open-Drain' output type. A resistance between it and Vcc is necessary to pick it up.

* Vout is an 'Inverter' output type. No resistance between it and Vcc.

Agamem Mircoelectronics Inc. AA16 Series

PRELIMINARY

Voltage detector with delay

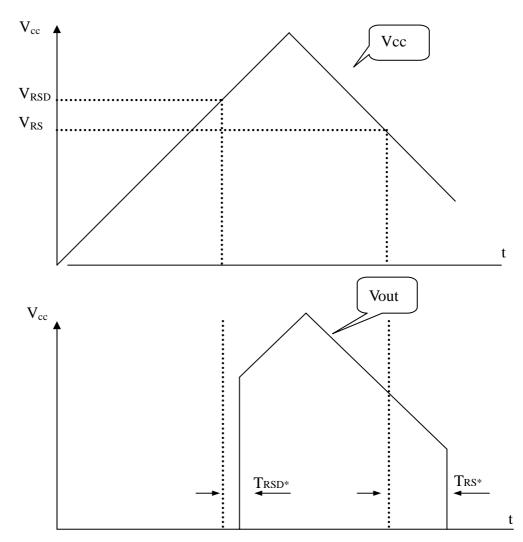
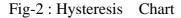
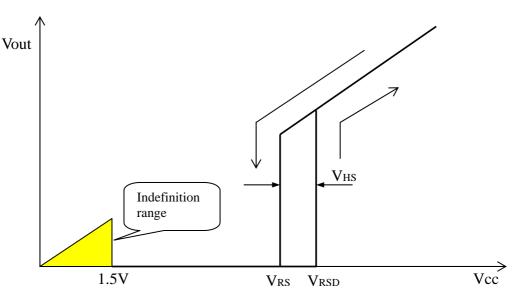


Fig-1 : Reset & Reset Disable Transfer Point

* V_{RSD} , reset disable voltage, is the detected output point when Vcc is increasing. V_{RS} , reset voltage, is the detected output point when Vcc is decreasing. T_{RSD} and T_{RS} is the c t onding delay time between the V_{RSD} and V_{RS} to the rising edge and falling edge of Vout.

** After Vout is settled, its rising and falling slope should be equal to the slope of Vcc because there is only a resistance between Vcc and Vout. The maximum value of Vout is equal to the one of Vcc, too.


2007/6/21



Agamem Mircoelectronics Inc. AA16 Series

PRELIMINARY

Voltage detector with delay

* Output can't be described correctly because the system isn't stable when the supply voltage Vcc is less than 1.5V

** In the Vcc increasing procedure, Vout equal to Vcc as Vcc is larger than V_{RSD} . In the Vcc decreasing procedure, Vout won't be change to Vcc until Vcc is smaller than V_{RS} . The width between V_{RS} and V_{RSD} is so called 'Hysteresis range'

PRELIMINARY

Voltage detector with delay

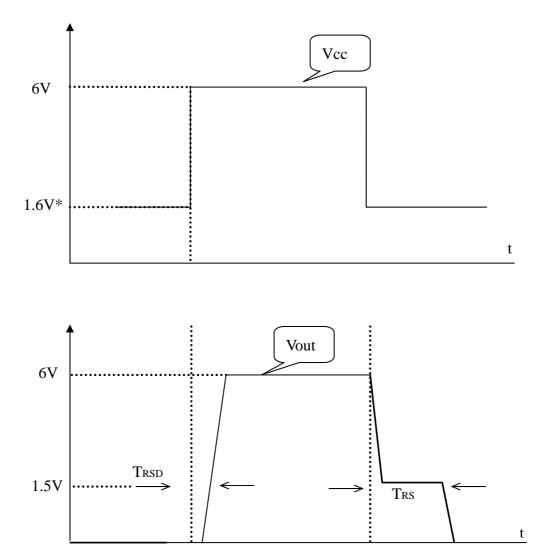
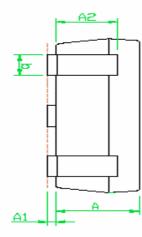
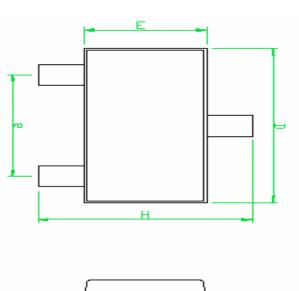
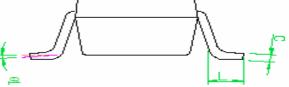


Fig-3: Output Delay Timing Chart

* There existing an output identification range as Vcc is less than 1.5V so under the testing condition this area should be keep off.


2007/6/21




PRELIMINARY

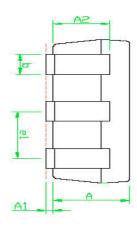
Voltage detector with delay

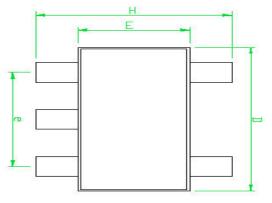
■ SOT-23 OUTLINE DRAWING

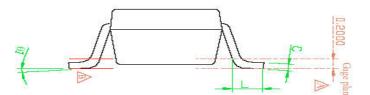
SYMBOLS	DIMENSIONS IN MILLIMETERS					
5 1112 0 25	MIN	NOM	MAX			
А	1.00	1.10	1.30			
A1	0.00		0.10			
A2	0.70	0.80	0.90			
b	0.35	0.40	0.50			
С	0.10	0.15	0.25			
D	2.70	2.90	3.10			
E	1.40	1.60	1.80			
e		1.90(TYP)				
Н	2.60	2.80	3.00			
L	0.37					
$\theta 1$	1	5	9			

NOTES:

- Package body sizes exclude mold flash protrusions or gate burrs
- Tolerance ± 0.1000 mm (4 mil) unless otherwise specified
- 3. Coplanarity:0.1000 mm
- Dimension l is measured in gage plane


2007/6/21




PRELIMINARY

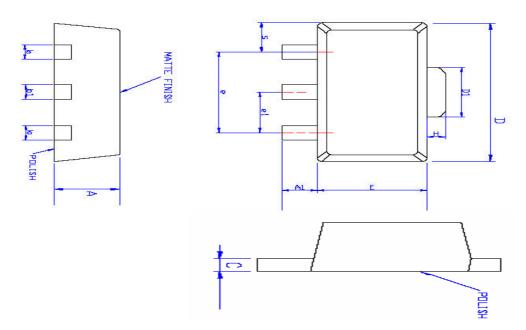
Voltage detector with delay

■ SOT-25 OUTLINE DRAWING

SYMBOLS	DIMENSIONS IN MILLIMETERS					
01112020	MIN	NOM	MAX			
А	1.00	1.10	1.30			
A1	0.00		0.10			
A2	0.70	0.80	0.90			
b	0.35	0.40	0.50			
С	0.10	0.15	0.25			
D	2.70	2.90	3.10			
Е	1.50	1.60	1.80			
e		1.90(TYP)				
Н	2.60	2.80	3.00			
L	0.37					
$\theta 1$	1°	5°	9°			
e 1		0.95(TYP)				
			10			

NOTES:

- Package body sizes exclude mold flash protrusions or gate burrs
- Tolerance ± 0.1000 mm (4 mil) unless otherwise specified
- 3. Coplanarity:0.1000 mm
- Dimension l is measured in gage plane


2007/6/21

PRELIMINARY

Voltage detector with delay

■ SOT-89 OUTLINE DRAWING

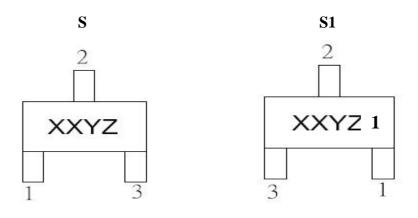
SYMBOL S	DIMENSIONS IN			DIMENSIONS IN			
5	MI	LLIMETH	ERS	INCHES			
	MIN	NOM	MAX	MIN	NOM	MAX	
А	1.40	1.50	1.60	0.055	0.059	0.063	
A1	0.80	1.04		0.031	0.041		
b	0.36	0.42	0.48	0.014	0.016	0.018	
b1	0.41	0.47	0.53	0.016	0.018	0.020	
С	0.38	0.40	0.43	0.014	0.015	0.017	
D	4.40	4.50	4.60	0.173	0.177	0.181	
D1	1.40	1.60	1.75	0.055	0.062	0.069	
HE			4.25			0.167	
Е	2.40	2.50	2.60	0.094	0.098	0.102	
е	2.90	3.00	3.10	0.114	0.118	0.122	
Н	0.35	0.40	0.45	0.014	0.016	0.018	
S	0.65	0.75	0.85	0.026	0.030	0.034	
e1	1.40	1.50	1.60	0.054	0.059	0.063	

NOTES:

- Package body sizes exclude mold flash protrusions or gate burrs
- Tolerance ± 0.1000 mm (4 mil) unless otherwise specified
- 3. Coplanarity:0.1000 mm
- 4. Dimension l is measured in

gage plane

2007/6/21



PRELIMINARY

Voltage detector with delay

ORDERING INFORMATION

Note: For there being two kinds of pin assignment in SOT-23 package, we mark S and S1 to distinguish.

AA16 X Y Z

DESIGNATOR	DESCRIPTION					
X	Output Configuration	Output Configuration				
	C=Inverter output	C=Inverter output				
	N=N-ch open drain output	N=N-ch open drain output				
Y	Operation Voltage					
	3=3.3V					
	5=5.0V					
Z	Package Type for 3.3V and 5V					
	S/S1=SOT-23 T=SOT-25 G=SOT-89					
Ex: AA16N	3S(S1 × T × G) Package 3.3V Operation Voltage N-ch open drain output					

2007/6/21