
© 2004 Parallax Inc. • IR Remote AppKit (#29122) • 10/2004 Page 1 of 10

599 Menlo Drive, Suite 100
Rocklin, California 95765, USA
Office: (916) 624-8333
Fax: (916) 624-8003

General: info@parallax.com
Technical: support@parallax.com
Web Site: www.parallax.com
Educational: www.stampsinclass.com

Infrared Remote AppKit (#29122)

A Wireless Keypad for Your BASIC Stamp® Microcontroller Module
With a universal remote and an infrared receiver, you can add a wireless keypad to your BASIC Stamp
Applications. The IR receiver is inexpensive, and only takes one I/O pin. Universal remotes are also
inexpensive, easy to obtain and replace, and have enough buttons for most applications. The parts in
this kit along with the example programs make it possible to enter values and control your projects in the
same way you might with a TV, VCR, or other entertainment system component.

IR Remotes can also add zing to your robotics projects. While this package insert provides you with
the essential background information, circuits, and example programs to get started, you can learn
lots more with IR Remote for the Boe-Bot by Andy Lindsay of Parallax Inc. This text is, for the most
part, a continuation of Robotics with the Boe-Bot, but with an IR remote twist. It follows the same
format in terms of introducing new hardware, explaining how things work, and demonstrating new
PBASIC techniques. IR remote applications for the Boe-Bot® robot include remote control, keypad
entry control, hybrid autonomous and remote control, and remote motion sequence programming.

Kit Contents*

Infrared Remote Parts List:

(1) 020-00001 Universal Remote and
 Universal Remote Manual
(1) 350-00014 IR detector
(1) 150-02210 Resistor – 220 Ω
(1) 800-00016 Jumper wires – bag of 10

*Requires 2 alkaline AA batteries, not included

How IR Communication Works
The universal remote sends messages by strobing its IR LED at 38.5 kHz for brief periods of time. The
actual data is contained in the amount of time each strobe lasts. Each IR protocol is different. In general,
the amount of time each 38.5 kHz signal lasts transmits some kind of message. One duration might
indicate the start of a message, while another indicates a binary-1, and still another indicates a binary-0.

The IR detector's output pin sends a low signal while it detects the 38.5 kHz IR signal, and a high signal
while it does not. So, a low signal of one duration might indicate the start of a message, while another
indicates a binary-1, and still another indicates a binary-0. This communication scheme is called pulse
width modulation (PWM), because when it is graphed against time, the IR detector's high/low signals form
pulses of different widths that correspond to their durations.

3 2 1

Page 2 of 10 © 2004 Parallax Inc. • IR Remote AppKit (#29122) • 10/2004

Handheld Remote
Infrared Messages

Excerpt from IR
Remote for the Boe-
Bot text.

The examples here will rely on the protocol that universal remotes use to control SONY® TV sets. This
protocol strobes the IR thirteen times with roughly a half-millisecond rest between each pulse. It results in
thirteen negative pulses from the IR detector that the BASIC Stamp can easily measure. The first pulse is
the start pulse, which lasts for 2.4 ms. The next twelve pulses will either last for 1.2 ms (binary-1) or 0.6
ms (binary-0). The first seven data pulses contain the IR message that indicates which key is pressed.
The last five pulses contain a binary value that specifies whether the message is intended to be sent to a
TV, VCR, CD, DVD player, etc. The pulses are transmitted in LSB-first order, so the first data pulse is
bit-0, the next data pulse is bit-1, and so on. If you press and hold a key on the remote, the same
message will be re-sent after a 20 to 30 ms rest.

Resting states
between data pulses
= 0.6 ms

Start pulse
duration = 2.4 ms

Binary-0
data pulse
durations = 0.6 ms

Binary-1
data pulse
durations = 1.2 ms

Resting state
between message
packets = 20-30 ms

Bit-0 Bit-2 Bit-4 Bit-6

0Start 0 0 0 0 0 0 0 0 011

Bit-8 Bit-10

Bit-1 Bit-3 Bit-5 Bit-7 Bit-9 Bit-11

IR Message Timing
Diagram

Values are approximate
and will vary from one
remote to the next

2.4 m
s

0.6 m
s1.2 m

s0.6 m
s

Rem
ot

e

2.4
m

s

0.6
m

s

1.2
m

s

0.6
m

s

© 2004 Parallax Inc. • IR Remote AppKit (#29122) • 10/2004 Page 3 of 10

IR Detection Circuit
For testing purposes, all you need is this IR detector circuit and the BASIC Stamp Editors’s Debug
Terminal.

Vdd

Vss

P9

220

1
2
3

IR Detector Circuit

IR detector viewed
from the top. Also
see Kit Contents
figure for pin map.

BASIC Stamp 2 "Bare-Bones" Example – IrRemoteCodeCapture.bs2
This example program demonstrates how to capture and display a remote code with the BASIC Stamp 2.
If you modify the $STAMP directive, it can also be used with the BASIC Stamp 2e or 2 pe.

√ First, make sure to use the documentation that comes with your universal remote to configure it to
control a SONY®TV.

√ Press the TV button on your remote so that you know it is sending TV signals.
√ Download or hand enter and run IrRemoteCodeCapture.bs2
√ Point the remote at the IR detector, and press/release the digit keys.
√ Also try POWER, CH+/-, VOL+/-, and ENTER to view the codes for these values.

' Ir Remote Application - IrRemoteCodeCapture.bs2

' Process incoming SONY remote messages & display remote code.

' {$STAMP BS2}

' {$PBASIC 2.5}

' SONY TV IR remote variables

irPulse VAR Word ' Stores pulse widths

remoteCode VAR Byte ' Stores remote code

DEBUG "Press/release remote buttons..."

DO ' Main DO...LOOP

 remoteCode = 0

 DO ' Wait for end of resting state.

 RCTIME 9, 1, irPulse

 LOOP UNTIL irPulse > 1000

 PULSIN 9, 0, irPulse ' Get data pulses.

 IF irPulse > 500 THEN remoteCode.BIT0 = 1

 RCTIME 9, 0, irPulse

 IF irPulse > 300 THEN remoteCode.BIT1 = 1

 RCTIME 9, 0, irPulse

 IF irPulse > 300 THEN remoteCode.BIT2 = 1

Page 4 of 10 © 2004 Parallax Inc. • IR Remote AppKit (#29122) • 10/2004

 RCTIME 9, 0, irPulse

 IF irPulse > 300 THEN remoteCode.BIT3 = 1

 RCTIME 9, 0, irPulse

 IF irPulse > 300 THEN remoteCode.BIT4 = 1

 RCTIME 9, 0, irPulse

 IF irPulse > 300 THEN remoteCode.BIT5 = 1

 RCTIME 9, 0, irPulse

 IF irPulse > 300 THEN remoteCode.BIT6 = 1

 ' Map digit keys to actual values.

 IF (remoteCode < 10) THEN remoteCode = remoteCode + 1

 IF (remoteCode = 10) THEN remoteCode = 0

 DEBUG CLS, ? remoteCode

LOOP ' Repeat main DO...LOOP

How IrRemoteCodeCapture.bs2 Works
Each time through the outermost DO…LOOP, the value of remoteCode is cleared. There's also an inner
DO…LOOP with an RCTIME command to detect the end of a high signal that lasted longer than 2 ms.
This indicates that the rest between message packets just ended, and the start pulse is beginning. The
first PULSIN command captures the first data pulse, and the IF…THEN statement that follows uses the
value of the irPulse variable to either set (or leave clear) the corresponding bit in the remoteCode
variable. Since the next data pulse has already started while the IF…THEN statement was executing, the
remainder of the next data pulse is measured with an RCTIME command. This next value is again used
to either set (or leave clear) the next bit in remoteCode. This is repeated five more times to get the rest
of the useful part of the IR message and set/clear the rest of the bits in remoteCode.

The BS2sx and BS2p handle remote codes a little differently. The programs usually search for the actual
start pulse with a PULSIN command instead of searching for the resting state between messages. They
also use PULSIN commands to capture all the pulses since the IF…THEN statements that sets bits in the
remoteCode variable complete before the starting edge of the next data pulse. To see a code example
that does this, see the #CASE statement for the BS2sx and BS2p inside the next example program's
Get_Ir_Remote_Code subroutine.

BASIC Stamp 2 Series Application Example – IrRemoteButtonDisplay.bs2
You can use this application example with BASIC Stamp 2, 2e, 2sx, 2p or 2pe modules to test your
remote and display which key you pressed.

√ As with the previous example program, make sure your remote is configured to control a SONY
TV first.

√ Update the $Stamp directive for the BASIC Stamp module you are using.
√ Download or hand enter, then run IrRemoteButtonDisplay.bs2.
√ Point the remote at the IR detector, press and release buttons
√ Make sure the Debug Terminal reports the correct button. Start with digits, channel, volume, etc.

You can modify or expand the SELECT…CASE statement to test for VCR keys defined in the Constants
section (Play, Stop, Rewind, etc.). There are usually several different codes for configuring universal
remotes to control SONY VCRs, so you may need to try a few before finding the code that makes the

© 2004 Parallax Inc. • IR Remote AppKit (#29122) • 10/2004 Page 5 of 10

remote speak the same PWM language as the TV controller. You can determine if the code worked
because number, CH/VOL+-, and POWER keys will still work after you have pressed the VCR button.

' -----[Title]---

' Ir Remote Application - IrRemoteButtonDisplay.bs2

' Process incoming SONY remote signals and display the corresponding button

' in the Debug Terminal.

' {$STAMP BS2} ' BS2, 2sx, 2e, 2p, or 2pe

' {$PBASIC 2.5}

' -----[Revision History]--

' V1.0 - Supports most SONY TV and VCR control buttons.

' Supports BASIC Stamp 2, 2SX, 2e, 2p, and 2pe modules.

' -----[I/O Definitions]---

' SONY TV IR remote declaration - input receives from IR detector

IrDet PIN 9 ' I/O pin to IR detector output

' -----[Constants]---

' Pulse duration constants for SONY remote.

#SELECT $stamp

 #CASE BS2, BS2E, BS2PE ' PULSE durations

 ThresholdStart CON 1000 ' Message rest vs. data rest

 ThresholdPulse CON 500 ' Binary 1 vs. 0 for PULSIN

 ThresholdEdge CON 300 ' Binary 1 vs. 0 for RCTIME

 #CASE BS2P, BS2SX

 ThresholdStart CON 2400 ' Binary 1 vs. start pulse

 ThresholdPulse CON 500 * 5 / 2 ' Binary 1 vs. 0 for PULSIN

 #CASE #ELSE

 #ERROR This BASIC Stamp NOT supported.

#ENDSELECT

' SONY TV IR remote constants for non-keypad buttons

Enter CON 11

ChUp CON 16

ChDn CON 17

VolUp CON 18

VolDn CON 19

Mute CON 20

Power CON 21

TvLast CON 59 ' AKA PREV CH

Page 6 of 10 © 2004 Parallax Inc. • IR Remote AppKit (#29122) • 10/2004

' SONY VCR IR remote constants

' IMPORTANT: Before you can make use of these constants, you must

' also follow the universal remote instructions to set your remote

' to control a SONY VCR. Not all remote codes work, so you may have to

' test several.

VcrStop CON 24

VcrPause CON 25

VcrPlay CON 26

VcrRewind CON 27

VcrFastForward CON 28

VcrRecord CON 29

' Function keys

FnSleep CON 54

FnMenu CON 96

' -----[Variables]---

' SONY TV IR remote variables

irPulse VAR Word ' Stores pulse widths

remoteCode VAR Byte ' Stores remote code

' -----[Initialization]--

DEBUG "Press/release remote buttons..."

' -----[Main Routine]--

' Replace this button testing DO...LOOP with your own code.

DO ' Main DO...LOOP

 GOSUB Get_Ir_Remote_Code ' Call remote code subroutine

 DEBUG CLS, "Remote button: " ' Heading

 SELECT remoteCode ' Select message to display

 CASE 0 TO 9

 DEBUG DEC remoteCode

 CASE Enter

 DEBUG "ENTER"

 CASE ChUp

 DEBUG "CH+"

 CASE ChDn

© 2004 Parallax Inc. • IR Remote AppKit (#29122) • 10/2004 Page 7 of 10

 DEBUG "CH-"

 CASE VolUp

 DEBUG "VOL+"

 CASE VolDn

 DEBUG "VOL-"

 CASE Mute

 DEBUG "MUTE"

 CASE Power

 DEBUG "POWER"

 CASE TvLast

 DEBUG "LAST"

 CASE ELSE

 DEBUG DEC remoteCode, " (unrecognized)"

 ENDSELECT

LOOP ' Repeat main DO...LOOP

' -----[Subroutine - Get_Ir_Remote_Code]---------------------------------

' SONY TV IR remote subroutine loads the remote code into the

' remoteCode variable.

Get_Ir_Remote_Code:

 remoteCode = 0

 #SELECT $stamp

 #CASE BS2, BS2E, BS2PE

 DO ' Wait for end of resting state.

 RCTIME IrDet, 1, irPulse

 LOOP UNTIL irPulse > ThresholdStart

 PULSIN IrDet, 0, irPulse ' Get data pulses.

 IF irPulse > ThresholdPulse THEN remoteCode.BIT0 = 1

 RCTIME IrDet, 0, irPulse

 IF irPulse > ThresholdEdge THEN remoteCode.BIT1 = 1

 RCTIME IrDet, 0, irPulse

 IF irPulse > ThresholdEdge THEN remoteCode.BIT2 = 1

 RCTIME IrDet, 0, irPulse

 IF irPulse > ThresholdEdge THEN remoteCode.BIT3 = 1

 RCTIME IrDet, 0, irPulse

 IF irPulse > ThresholdEdge THEN remoteCode.BIT4 = 1

 RCTIME IrDet, 0, irPulse

 IF irPulse > ThresholdEdge THEN remoteCode.BIT5 = 1

 RCTIME IrDet, 0, irPulse

 IF irPulse > ThresholdEdge THEN remoteCode.BIT6 = 1

 #CASE BS2SX, BS2P

 DO ' Wait for start pulse.

 PULSIN IrDet, 0, irPulse

 LOOP UNTIL irPulse > ThresholdStart

Page 8 of 10 © 2004 Parallax Inc. • IR Remote AppKit (#29122) • 10/2004

 PULSIN IrDet, 0, irPulse ' Get data pulses.

 IF irPulse > ThresholdPulse THEN remoteCode.BIT0 = 1

 PULSIN IrDet, 0, irPulse

 IF irPulse > ThresholdPulse THEN remoteCode.BIT1 = 1

 PULSIN IrDet, 0, irPulse

 IF irPulse > ThresholdPulse THEN remoteCode.BIT2 = 1

 PULSIN IrDet, 0, irPulse

 IF irPulse > ThresholdPulse THEN remoteCode.BIT3 = 1

 PULSIN IrDet, 0, irPulse

 IF irPulse > ThresholdPulse THEN remoteCode.BIT4 = 1

 PULSIN IrDet, 0, irPulse

 IF irPulse > ThresholdPulse THEN remoteCode.BIT5 = 1

 PULSIN IrDet, 0, irPulse

 IF irPulse > ThresholdPulse THEN remoteCode.BIT6 = 1

 #CASE #ELSE

 #ERROR "BASIC Stamp version not supported by this program."

 #ENDSELECT

 ' Map digit keys to actual values.

 IF (remoteCode < 10) THEN remoteCode = remoteCode + 1

 IF (remoteCode = 10) THEN remoteCode = 0

 RETURN

BASIC Stamp 2 Series Example - Multi-Digit Application
You can use the remote for keypad entry of values by replacing the DO…LOOP in
IrRemoteButtonDisplay.bs2's main routine one shown below. It works for values from 0 to 65535; just
type in the value on the digital keypad, then press the remote's ENTER key.

√ Add this declaration to the IrRemoteButtonDisplay.bs2's Variables section:

 value VAR Word ' Stores multi-digit value

√ Replace the DO…LOOP in IrRemoteButtonDisplay.bs2's main routine with the one shown below.
√ Run the program and follow the Debug Terminal's prompts.

' Replace the DO...LOOP in the Main Routine with this one for multi-digit

' value acquisition (up to 65535). Value stored in value variable.

DEBUG CR, CR, "Type value from", CR, "0 to 65535,", CR,

 "then press ENTER", CR, CR

DO

 value = 0

 remoteCode = 0

 DO

 value = value * 10 + remoteCode

 DO

 GOSUB Get_Ir_Remote_Code

 IF (remoteCode > 9) AND (remoteCode <> Enter) THEN

© 2004 Parallax Inc. • IR Remote AppKit (#29122) • 10/2004 Page 9 of 10

 DEBUG "Use digit keys or ENTER", CR

 PAUSE 300

 ELSE

 DEBUG "You pressed: "

 IF remoteCode = Enter THEN

 DEBUG "Enter", CR

 ELSE

 DEBUG DEC remoteCode, CR

 ENDIF

 PAUSE 300

 ENDIF

 LOOP UNTIL (remoteCode < 10) OR (remoteCode = Enter)

 LOOP UNTIL (remoteCode = Enter)

 DEBUG ? value, CR, "Ready for next value...", CR

LOOP

Boe-Bot Application for the BASIC Stamp 2
This next application requires a Boe-Bot robot with a BASIC Stamp 2 module which you will be able to
control by pressing and holding the numeric keys to execute the maneuvers shown in the figure. In
addition, you can use CH+ = forward, CH- = backward, VOL+ = rotate right, VOL- = rotate left.

Numeric Keypad
Direction Control

The routine below is for a Boe-Bot robot with Parallax Continuous Rotation servos. Its left servo should
be connected to P13, and its right servo connected to P12. If you have Parallax PM servos, use 500 in
place of 650 and 1000 in place of 850 for the PULSOUT command duration arguments.

√ Replace the DO…LOOP in the IrRemoteButtonDisplay.bs2's main routine with this one, run it,
and operate the Boe-Bot with your remote. Have fun!

DEBUG CR, CR, "Press and hold digit", CR, "or CH+/-, VOL+/- keys", CR,
 "to control the Boe-Bot..."

DO
 GOSUB Get_Ir_Remote_Code
 SELECT remoteCode
 CASE 2, ChUp ' Forward
 PULSOUT 13, 850
 PULSOUT 12, 650
 CASE 4, VolDn ' Rotate Left

Page 10 of 10 © 2004 Parallax Inc. • IR Remote AppKit (#29122) • 10/2004

 PULSOUT 13, 650
 PULSOUT 12, 650
 CASE 6, VolUp ' Rotate Right
 PULSOUT 13, 850
 PULSOUT 12, 850
 CASE 8, ChDn ' Backward
 PULSOUT 13, 650
 PULSOUT 12, 850
 CASE 1 ' Pivot Fwd-left
 PULSOUT 13, 750
 PULSOUT 12, 650
 CASE 3 ' Pivot Fwd-right
 PULSOUT 13, 850
 PULSOUT 12, 750
 CASE 7 ' Pivot back-left
 PULSOUT 13, 750
 PULSOUT 12, 850
 CASE 9 ' Pivot back-right
 PULSOUT 13, 650
 PULSOUT 12, 750
 CASE ELSE ' Hold position
 PULSOUT 13, 750
 PULSOUT 12, 750
 ENDSELECT
LOOP

More Resources
These resources are available from www.parallax.com.

Lindsay, Andy. IR Remote for the Boe-Bot, Student Guide, Version 1.0, California: Parallax,
Inc., 2004.

This book is discussed on the first page of this package insert.

Williams, Jon. The Nuts and Volts of the BASIC Stamps, Volume 3, California: Parallax, Inc,
2003.

Column #76: Control from the Couch introduces capturing and decoding SONY TV IR control
signals with the BASIC Stamp 2SX (or 2p).

BASIC Stamp and Boe-Bot are registered trademarks of Parallax Inc. Parallax and the Parallax logo are trademarks of Parallax Inc.

Sony is a registered trademark of Sony Corporation Japan.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

 Parallax:

 29122

http://www.mouser.com/parallax
http://www.mouser.com/access/?pn=29122

