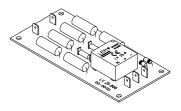
Voltage Transducer LV 25-800

For the electronic measurement of voltages : DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit).

Electrical data

CE


V _{PN}	Primary nominal r.m.s	800		V	
V	Primary voltage, measuring range		0 ± 1200		V
I _{PN}	Primary nominal r.m.s. current		10		mΑ
R _M	Measuring resistance		$\mathbf{R}_{_{Mmin}}$	R _{Mmax}	t.
	with ± 12 V	$@ \pm 800 V_{max}$	30	200	Ω
		@ ±1200 V max	30	100	Ω
	with ± 15 V	$@ \pm 800 V_{max}$	100	320	Ω
		@ ±1200 V max	100	180	Ω
I _{sn}	Secondary nominal r.m.s. current		25		mA
K	Conversion ratio		800 V / 25 mA		
V _c	Supply voltage (± 5 %)		± 12 15		V
I _c	Current consumption	$10(@\pm 15V)+I_{s}$		mA	
Ŭ _d	R.m.s. voltage for AC	4.1		kV	
Α	ccuracy - Dynamic	performance data			
x		T – 25°€	+08		%

Х _с е ,	Overall Accuracy @ V_{PN} , $T_{A} = 25^{\circ}$ C Linearity	C	± 0.8 < 0.2		% %
	Linearity		-	Max	
I _o	Offset current @ $I_p = 0$, $T_A = 25^{\circ}C$			± 0.15	mΑ
I _{ot}	Thermal drift of I	- 25°C + 25°C	Тур ± 0.10	± 0.60	mΑ
01	Ū.	+ 25°C + 70°C	± 0.10	± 0.60	mΑ
t,	Response time @ 90 % of $\mathbf{V}_{_{Pmax}}$		25		μs

General data \mathbf{T}_{A} \mathbf{T}_{S} - 25 .. + 70 °C Ambient operating temperature Ambient storage temperature - 40 .. + 85 °C Ν Turns ratio 2500:1000 Ρ Total primary power loss W 8 Primary resistance @ $T_{A} = 25^{\circ}C$ R₁ 80 kΩ \mathbf{R}_{s} Secondary coil resistance @ $T_{a} = 70^{\circ}C$ 110 Ω m Mass 60 Standards 2) EN 50178

Notes : 1) Between primary and secondary

²⁾ A list of corresponding tests is available

800 V

Features

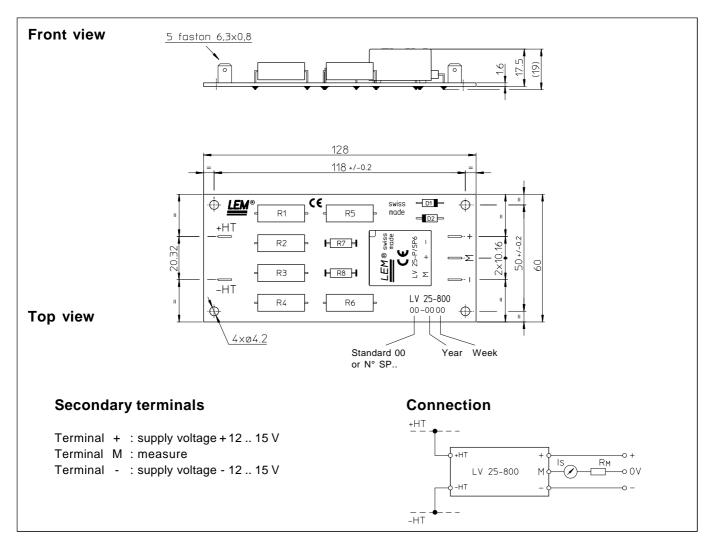
V_{PN}

- Closed loop (compensated) voltage transducer using the Hall effect
- Transducer with insulated plastic case recognized according to UL 94-V0
- \bullet Primary resistor ${\bf R}_{\,\scriptscriptstyle 1}$ and transducer mounted on printed circuit board 128 x 60 mm.

Advantages

- Excellent accuracy
- Very good linearity
- Low thermal drift
- · High immunity to external interference.

Applications


g

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Uninterruptible Power Supplies (UPS)
- · Power supplies for welding applications.

www.lem.com

Dimensions LV 25-800 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Fastening
- Connection of primary
- Connection of secondary

± 0.3 mm	
4 holes Ø 4.2	mm

- Faston 6.3 x 0.8 mm
 - Faston 6.3 x 0.8 mm

Remarks

- $\mathbf{I}_{_{\mathrm{S}}}$ is positive when $\mathbf{V}_{_{\mathrm{P}}}$ is applied on terminal +HT.
- The primary circuit of the transducer must be linked to the connections where the voltage has to be measured.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.