

— a4231 general features

The a4231 is a proximity sensor integrated circuit to be used with a broad range of inductive single-coiled proximity transducers in proximity detection applications

- ☐ Monolithic IC in bipolar technology
- ☐ User-adjustable sensing range by means of a single external resistor
- ☐ User-adjustable hysteresis (0...15%)
- □ 5.5V...35V broad supply voltage range
- ☐ Low-voltage operation possible using stabilised 4.5V...5.5V voltage source
- ☐ Internal voltage regulator to improve immunity against fluctuations of supply voltage
- ☐ Broad operating temperature range: -25°C...90°C
- ☐ Can work with a broad selection of inductive transducers
- NPN open collector output with guaranteed sink current of 150mA
- ☐ Output overload/over current protection
- ☐ Integrated power-on and detect LED drivers
- ☐ Normally open(NO)/normally closed(NC) select pin
- ☐ Broad range of operating frequencies: 100kHz...1MHz
- ☐ Output over current and short-circuit protection
- ☐ Easy temperature compensation of proximity transducers
- ☐ Package QFN-24

example application schematic

Typical application schematic of a proximity sensor/detector

electrical characteristics

DC Characteristics

The typical values are given for V_{CC} =24V and T_i = 25°C unless otherwise specified.

#	Symbol	Parameter	Conditions	Min	Тур	Max	Unit
1	I _{VCC,OFF}	Supply current	Output inactive (off)		3.8	4.8	mA
2	I _{VCC,ON}	Supply current	Output active (on)		8.5	12	mA
3	$V_{\text{SAT,OUT}}$	Output saturation voltage	I _{OUT} =150mA		0.50	0.70	٧
4	I _{LED}	LED current		1.0	1.2	1.6	mA
5	I_{LKG}	Output leakage current			<1	20	μΑ
6	$I_{TH,OVL}$	Overload threshold current*1)		158	190	220	mA

^{*1)—}overload threshold current is the level of the output current which triggers the overload protection circuit.

AC and Timing Characteristics

The typical values are given for V_{CC} =24V and Tj = 25°C unless otherwise specified.

#	Symbol	Parameter	Conditions	Min	Тур	Max	Unit
1	f _{osc}	Operating frequency	Defined by external LC tank	0.1		1.0	MHz
2	R _N	Negative resistance between pin L1 and ground	$R_N = -2 \cdot R_F + 1/-3\%$	-200		-2	kΩ
3	f _{MAX}	Maximum switching frequency*1)	C _{DET} =4.7pF, f _{OSC} =600kHz		5		kHz
			C _{DET} =33pF f _{OSC} =100kHz		2		2
4	Hw	Hysteresis width	Depends on R _{HYST}	0		15	%
5	t _R	Output rise time	Load=1kohm		<1.5		μs
6	t₅	Output fall time*2)	Load=1kohm		<1		μs
7	T _{S,OVL}	Sampling period in overload mode	Depends on C _{OVL}	50	120	250	ms
8	T _{STARTUP}	Startup time*3)		50	120	250	ms
10	C _{IN}	Input capacitance	Measured between Pin L1 and AC ground (Pin L2) for $f_{\rm OSC}$ =0.21MHz and $ R_{\rm N} $ =2100kohm	6	8.5	13	pF

^{*1) –} these are maximum switching frequencies of the IC itself; switching frequencies of sensors may be higher than those given above,

^{*2) –} the fall time on leaving the start-up interval depends on the load used and can be as long as 10ms,

^{*3) –} this is the maximum start-up time of the chip itself; this parameter does not reflect performance of a sensor; during the start-up interval the output is inactive (OFF) regardless of the state of the NO/NC pin.