

A LT-2W & B LT-2W Series

2W, FIXED INPUT, ISOLATED & UNREGULATED, DUAL/SINGLE OUTPUT, SMD, DC-DC CONVERTER

PRODUCT PROGRAM

Part

Number

Input

Voltage (VDC)

multi-country patent protection RoHS

Current (mA)

Efficiency

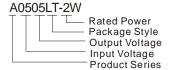
(% Tvp)

Output

FEATURES

High Efficiency up to 85% SMD Package
1KVDC Isolation
Temperature Range: -40°C to +85°C Internal SMD Construction
No Heat sink Required
No External Component Required Industry Standard Pinout
RoHS Compliance

APPLICATIONS


The A_LT-2W & B_LT-2W Series are specially designed for applications where a group of polar power supplies are isolated from the input power supply in a distributed power supply system on a circuit board.

These products apply to:

- Where the voltage of the input power supply is fixed (voltage variation ≤ ±10%);
- Where isolation is necessary between input and output (isolation voltage ≤1000VDC);
- Where the regulation of the output voltage and the output ripple noise are not demanding.

Such as: purely digital circuits, ordinary low frequency analog circuits, and IGBT power device driving circuits.

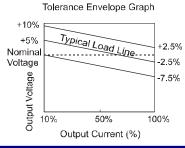
MODEL SELECTION

MORNSUN Science& Technology co.,Ltd.
Address: 2th floor 6th building, Hangzhou
Industrial District, Guangzhou, China
Tel: 86-20-38601850
Fax: 86-20-38601272
http://www.mornsun-power.com

number						(%, Typ)	
rumbor	Nominal	Range	(VDC)	Max	Min	(70, 170)	
A0505LT-2W		4.5-5.5	±5	±200	±20	82	
A0509LT-2W			±9	±111	±11	83	
A0512LT-2W	7		±12	±83	±8	84	
A0515LT-2W	5		±15	±67	±7	82	
B0505LT-2W	3		5	400	40	80	
B0509LT-2W			9	222	23	82	
B0512LT-2W			12	167	17	84	
B0515LT-2W			15	133	14	84	
A1205LT-2W	12	10.8-13.2	±5	±200	±20	83	
A1209LT-2W			±9	±111	±11	84	
A1212LT-2W			±12	±83	±8	84	
A1215LT-2W			±15	±67	±7	85	
B1205LT-2W			5	400	40	82	
B1209LT-2W			9	222	23	83	
B1212LT-2W			12	167	17	85	
B1215LT-2W	. 10		15	133	14	85	

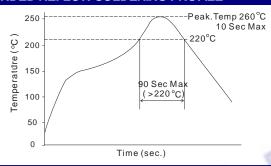
Voltage

Item	Test Conditions	Min	Тур	Max	Units	
Output power		0.2 2				
Line regulation	For Vin change of 1%			±1.2		
	10% to 100% load (5V output)		12.8	15	%	
Load regulation	10% to 100% load (9V output)		8.3	15		
Load regulation	10% to 100% load (12V output)		6.8	15		
	10% to 100% load (15V output)		6.3	15		
Output voltage accura	су	See tolerance envelope grap			graph	
Temperature drift	100% full load			0.03	%/°C	
Ripple & Noise*	20MHz Bandwidth	75 150		150	mVp-p	
Switching frequency	Full load, nominal input	70		KHz		

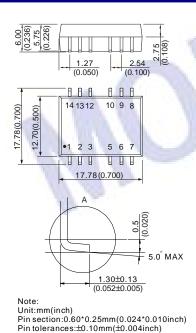

COMMON SPECIFICATION							
Item	Test Conditions	Min	Тур	Max	Units		
Storage humidity				95	%		
Operating temperature		-40		85			
Storage temperature		-55		125	°C		
Lead temperature			15	25			
Temp. rise at full load	1.5mm from case for 10 seconds			260			
Cooling		Free air convection					
Short circuit protection*				1	s		
Case material		Plastic(UL94-V0)					
MTBF		3500			K hours		
Weight			2.1		g		
*Supply voltage must be discontinued at the end of short circuit duration.							

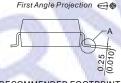

Note: 1.All specifications measured at TA=25°C, humidity<75%, nominal input voltage and rated output loac unless otherwise specified.

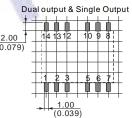
^{2.}See below recommended circuits for more details.


ISOLATION CHARACTERISTICS						
Item	Test Conditions	Min	Тур	Max	Units	
Isolation voltage	Tested for 1 minute and 1mA max	1000			VDC	
Isolation resistance	Test at 500VDC	1000			МΩ	

TYPICAL CHARACTERISTICS




RECOMMENDED REFLOW SOLDERING PROFILE


OUTLINE DIMENSIONS & PIN CONNECTIONS

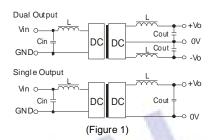
General tolerances: ±0.25mm(±0.010inch)

RECOMMENDED FOOTPRINT Top view,grid:2.54*2.54mm(0.1*0.1inch)

FOOTPRINT DETAILS					
Pin	Singles	Duals			
1	GND	GND			
2	Vin	Vin			
5	NC	-Vo			
6	0 V	0V			
7	+Vo	+Vo			
10	NC	-Vo			
Others	NC	NC			
NC:No Connection					

APPLICATION NOTE

Requirement on output load


To ensure this module can operate efficiently and reliably, During operation, the minimum output load is **not less than 10%** of the full load, and that **this product should never be operated under no load!** If the actual output power is very small, please connect a resistor with proper resistance at the output end in parallel to increase the load, or use our company's products with a lower rated output power (A_T -1W/B_T-1W series).

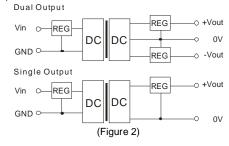
Overload Protection

Under normal operating conditions, the output circuit of these products has no protection against overload. The simplest method is to connect a self-recovery fuse in series at the input end or add a circuit breaker to the circuit.

Recommended testing and application circuit

If you want to further decrease the input/output ripple, an "LC" filtering network may be connected to the input and output ends of the DC/DC converter, see (Figure 1).

It should also be noted that the inductance and the frequency of the "LC" filtering network should be staggered with the DC/DC frequency to avoid mutual interference. However, the capacitance of the output filter capacitor must be proper. If the capacitance is too big, a startup problem might arise. For every channel of output, provided the safe and reliable operation is ensured, the recommended capacitance of its filter capacitor sees (Table 1).


EXTERNAL CAPACITOR TABLE (TABLE 1)

Vin (VDC)	Cin (uF)	Single Vout (VDC)	Cout (uF)	Dual Vout (VDC)	Cout (uF)
5	4.7	5	10	±5	4.7
12	2.2	9	4.7	±9	2.2
-	-	12	2.2	±12	1
-	-	15	1	±15	0.47

It's not recommended to connect any external capacitor in the application field with less than 0.5 watt output.

Output Voltage Regulation and Over-voltage Protection Circuit

The simplest device for output voltage regulation, over-voltage and over-current protection is a linear voltage regulator with overheat protection that is connected to the input or output end in series (Figure 2).

No parallel connection or plug and play.