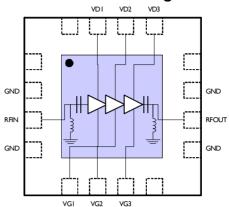


Rev. V2

Buffer Amplifier 37.0-40.0 GHz Mimix Broadband

Features

- 21.0 dB Small Signal Gain
- +22.0 dBm Psat
- +20.0 dBm P1dB
- +30.5 dBm Output IP3
- Variable Gain with Adjustable Bias
- Lead-free 4 mm 16-lead PQFN Package
- 100% RF, DC and Output Power Testing
- RoHS* Compliant and 260°C Reflow Compatible


Description

M/A-COM Tech's three stage 37.0-40.0 GHz GaAs MMIC buffer amplifier has a small signal gain of 21.0 dB and 20.0 dBm P1dB output compression point. The device also provides variable gain regulation with adjustable bias. The device is ideally suited as an LO or RF buffer stage with broadband performance at a very low cost. The device comes in an RoHS compliant 3x3mm QFN surface mount package offering excellent RF and thermal properties. This device has been designed for use in GHz Point-to-Point Microwave applications.

Ordering Information

Part Number	Package		
XB1014-QT-0G00	bulk quantity		
XB1014-QT-0G0T	tape and reel		
XB1014-QT-EV1	evaluation board		

Functional Block Diagram/Board Layout

Pin Configuration

Pin No.	Function	Pin No.	No. Function		
3	RF Input	10	RF Output		
5	Gate 1 Bias	13	Drain 3 Bias		
6	Gate 2 Bias	14	Drain 2 Bias		
7	Gate 3 Bias	15	Drain 1 Bias		

Absolute Maximum Ratings^{1, 2}

Parameter	Absolute Max.					
Supply Voltage (Vd1,2,3)	+4.3 V					
Supply Voltage (Vg1,2,3)	-1.5V < Vg < 0V					
Input Power (Pin)	+20 dBm					
Abs. Max Junction/Channel Temp	MTTF Graph ¹					
Max. Operating Junction/Channel Temp	150 °C					
Continuous Power Dissipation (Pdiss) at 85 °C	1.2 W					
Thermal Resistance	47 °C/W					
Operating Temperature (Ta)	-55 °C to MTTF Graph ¹					
Storage Temperature (Tstg)	-65 °C to +165 °C					
Mounting Temperature	See solder reflow profile					
ESD Min Machine Model (MM)	Class A					
ESD Min Human Body Model (HBM)	Class 1A					
MSL Level	MSL1					

Channel temperature directly affects a device's MTTF. Channel temperature should be kept as low as possible to maximize lifetime

For saturated performance it is recommended that the sum of (2*Vdd + abs(Vgg)) <9V

Buffer Amplifier

Rev. V2

37.0-40.0 GHz

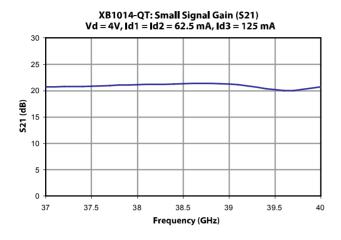
Mimi× Broadband

Electrical Specifications: 37-40 GHz (Ambient Temperature T = 25°C)

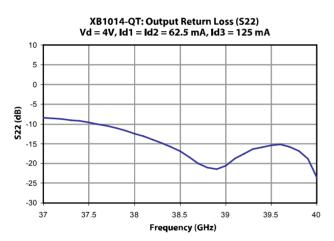
Parameter	Units	Min.	Тур.	Max.
Input Return Loss (S11)	dB	-	7.0	40.0
Output Return Loss (S22)	dB	-	10.0	1
Small Signal Gain (S21)	dB	17.0	21.0	-
Reverse isolation (S12)	dB	-	40.0	24.5
Output Power for 1dB Compression Point (P1dB)	dBm	-	20.0	-
Saturated Output Power (Psat)	dBm	19.5	22.0	-
Output IP3 (Psci = 4 dBm)	dBm	27.0	30.5	-
Drain Bias Voltage (Vd1,2,3)	V	-	4.0	4.0
Gate Bias Voltage (Vg1,2,3)	V	-1.0	-0.3	-0.1
Supply Current (ld1,2,3)	mA	-	250	300

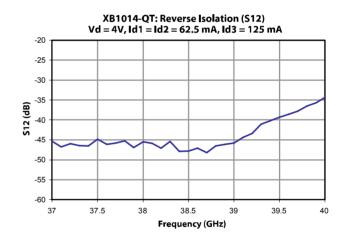
[•] India Tel: +91.80.43537383 • China

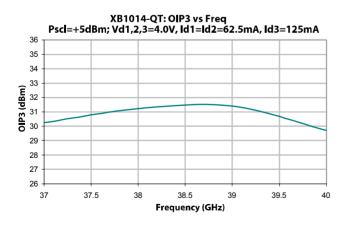
[•] China Tel: +86.21.2407.1588

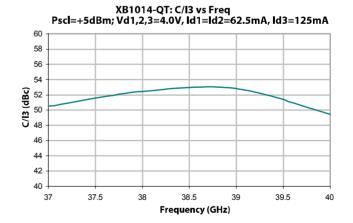

Buffer Amplifier

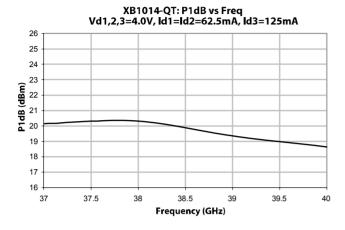
Rev. V2

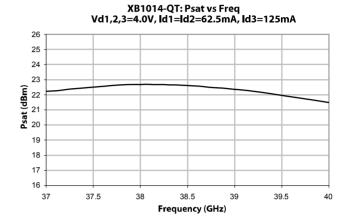

37.0-40.0 GHz


Mimi× Broadband


Typical Performance Curves

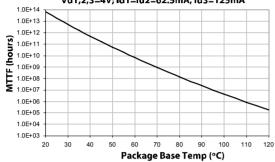


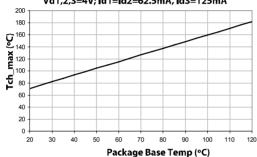



typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available.

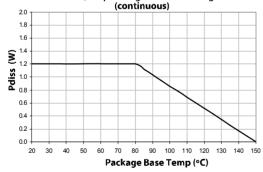
Buffer Amplifier Rev. V2 37.0-40.0 GHz Mimix Broadband

Typical Performance Curves (cont.)




Buffer Amplifier 37.0-40.0 GHz Mimix Broadband

MTTF

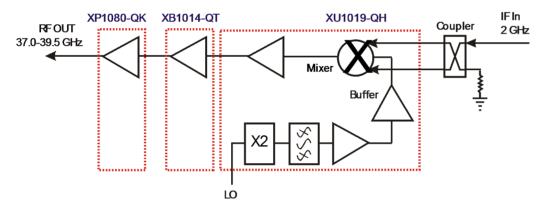

XB1014-QT: MTTF hours vs. Package Base Temperature Vd1,2,3=4V; ld1=ld2=62.5mA, ld3=125mA

XB1014-QT: Tch (max) vs. Package Base Temperature Vd1,2,3=4V; Id1=Id2=62.5mA, Id3=125mA

XB1014-QT: Operating Power De-rating Curve

Buffer Amplifier

Rev. V2


37.0-40.0 GHz

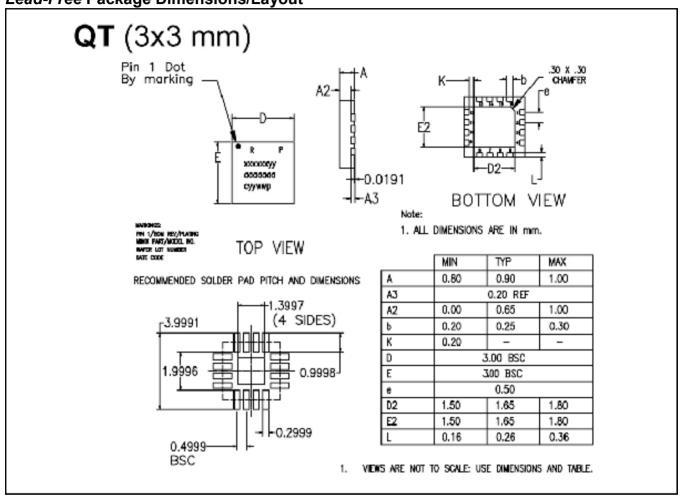
Mimi× Broadband

App Note [1] Biasing - It is recommended to bias the amplifier with Vd=4.0V and IdTOTAL=250mA. It is also recommended to use active biasing to keep the currents constant as the RF power and temperature vary; this gives the most reproducible results. Depending on the supply voltage available and the power dissipation constraints, the bias circuit may be a single transistor or a low power operational amplifier, with a low value resistor in series with the drain supply used to sense the current. The gate of the pHEMT is controlled to maintain correct drain current and thus drain voltage. The typical gate voltage needed to do this is -0.3V. Typically the gate is protected with Silicon diodes to limit the applied voltage. Also, make sure to sequence the applied voltage to ensure negative gate bias is available before applying the positive drain supply.

App Note [2] Bias Arrangement - Each DC pin (Vd and Vg) needs to have DC bypass capacitance (100pF/10nF/1uF) as close to the package as possible.

Typical Application

MMIC-based 37.0-40.0 GHz Transmitter Block Diagram


Buffer Amplifier

37.0-40.0 GHz

Rev. V2

Mimi× Broadband

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these class 2 devices.

typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available.

[•] North America Tel: 800.366.2266 • Europe Tel: +353.21.244.6400 • India Tel: +91.80.43537383 • China Tel: +86.21.2407.1588