

MAS9128A

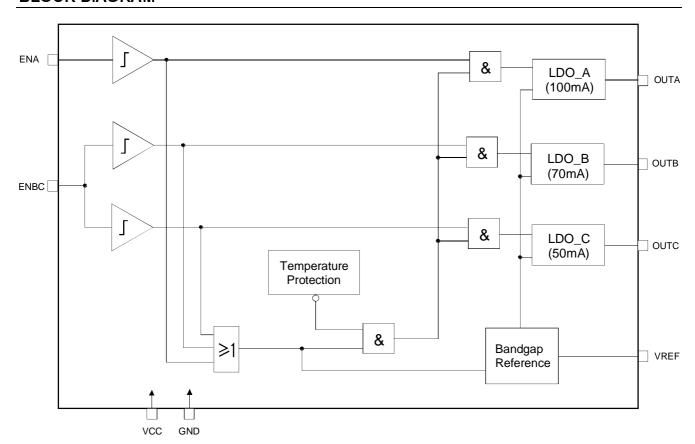
LDO Voltage Regulator IC

- Three low dropout voltage regulators
- Regulator enable/disable control
- Power saving sleep mode
- Thermal protection

DESCRIPTION

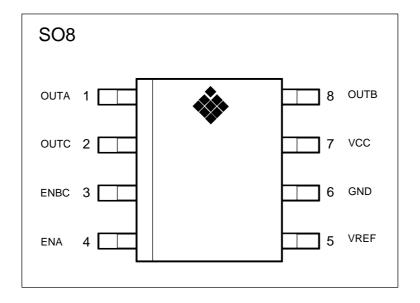
The MAS9128A is voltage regulator IC with three 2.85V LDO regulators providing voltage regulation for the handset terminal. The output voltages of the three regulators can be modified through a mask option. Two enable/disable pins control the state of

the regulators. In order to save power the device goes into sleep mode when all regulators are disabled. An internal thermal protection circuit prevents the device from overheating. The maximum output current is limited internally.


FEATURES

- 2.85V regulators at 100mA, 70mA and 50mA
- Output accuracy <±3%
- Fast dynamic response
- Low output noise
- Low supply current: 150µA per regulator
- SO8 package

APPLICATION


- Mobile phones
- Cordless phones
- · Battery powered systems

BLOCK DIAGRAM

PIN CONFIGURATION

PIN DESCRIPTION

Pin Name	Pin	Type	Function
OUTA	1	0	2.85V/100mA regulator output
OUTC	2	0	2.85V/50mA regulator output
ENBC	3	I	Enable for regulators B and C
ENA	4	I	Enable for regulator A
VREF	5	0	Reference voltage
GND	6	Р	Ground
VCC	7	Р	Positive supply voltage
OUTA	8	0	2.85V/70mA regulator output

ABSOLUTE MAXIMUM RATINGS

(All voltages with respect to ground.)

Parameter	Symbol	Conditions	Min	Max	Unit
Supply Voltage	V _{cc}		-0.3	13.0	V
Logic input voltage	V _{EN}		-0.3	V _{CC} +0.3	
Max. Junction Temperature	TJ			150	°C
Thermal resistance	R _{JA}			163	°C/W
Lead temperature		for 10 seconds		230	°C
Storage Temperature	Ts		-55	+150	°C
ESD Rating					

Note 1: Stresses beyond those listed may cause permanent damage to the device. The device may not operate under these conditions, but will not be destroyed.

RECOMMENDED OPERATION CONDITIONS

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Supply Voltage	V_{CC}		3.1		6.5	V
Operating Temperature	T _{AMB}		-20		+70	°C

ELECTRICAL CHARACTERISTICS

◆ Thermal protection

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Threshold high	T _H		130	150	170	°C
Threshold low	T _L		120	140	160	°C
Continuos power dissipation in operation						
		$T_{AMB} = 25^{\circ}C$			644	mW
		$T_{AMB} = 70^{\circ}C$			368	mW

NOTE 2:A hysteresis of 10°C avoids oscillation in case of thermal shutdown. After the regulator temperature has dropped by this value, it will turn on again automatically.

◆ Digital Inputs (ENA, ENBC)

 $(T_{AMB} = -20^{\circ}C \text{ to } +70^{\circ}C, \text{ unless otherwise noted. Typical value for Tis } 27^{\circ}C.)$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Input high voltage	V_{IH}		2.2			V
Input low voltage	V _{IL}				0.40	V

ELECTRICAL CHARACTERISTICS

◆ Regulator Outputs (LDO_A, LDO_B, LDO_C)

 $(T_{AMB} = -20^{\circ}C \text{ to } +70^{\circ}C, \text{ unless otherwise noted.}$ Typical value for Jis 27°C Cin=1µF Cout= 1µF,ceramic)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output voltage	V _{OUT}	$3.1V < V_{CC} < 6.5V$, $0mA < I_{OUT} < I_{MAX}$	2.7	2.85	3.0	V
Short circuit current						
LDO_A	I _{MAXA}			310		mA
LDO_B	I _{MAXB}			220		mA
LDO_C	I _{MAXC}			170		mA
Load Current						
LDO_A	I _{OUTA}		0		100	mA
LDO_B	I _{OUTB}		0		70	mA
LDO_C	I _{OUTC}		0		50	mA
Line regulation		1Vpp at V _{CC} , max. load		1.1	10	mV
Load regulation		$0mA < I_{OUT} < I_{MAX}$				
LDO_A				9	45	mV
LDO_B				6	31	mV
LDO_C				5	22	mV
Load transient		$T_{AMB} = 25^{\circ}C$				
		10uA to ½ load in 1us (4)		-60		mV
		100uA to max. Load in 1us (4)		-70		mV
		10uA to max. Load in 1us (5)		-85		mV
PSRR		f ≤ 10kHz, 1Vpp at V _{CC} = 4.5V CREF = 10nF	50	60		dB
Quiescent current per regulator		(3)				
	I_{QR}	ON, max. load		170		uA
	I_{QR}	ON, I _{OUT} = 100uA		150		uA
	I_{QR}	OFF		<1		uA
Total quiescent current	IQ	$ENA = ENBC = 0V$ $I_{OUT} = 0 V_{CC} = 6.5V$		<1	30	μA
Noise						
		10Hz < f < 100kHz typical load, no capacitor at VREF		190		uVrms
		10Hz < f < 100kHz typical load, 10nF cap. at VREF		50		uVrms
Settling time		Enables OFF to ON 2.7V < V _{OUT} < 3.0V 10nF cap. at VREF		0.5	1.0	ms
Output capacitor						
	C _{OUT}		0.8	1.0	2.6	uF
	ESR		0.01	0.1	1	Ohm

NOTE 3:To get the real quiescent current of the device, the quiescent current of the reference voltage generator (140uA typ.) has to be added together once for all regulators.

NOTE 4:V_{OUT} does not drop below 2.7V for more than 1us.

NOTE 5:V_{OUT} does not drop below 2.5V for more than 1us or below 2.7V for more than 50us.

FUNCTIONS

_

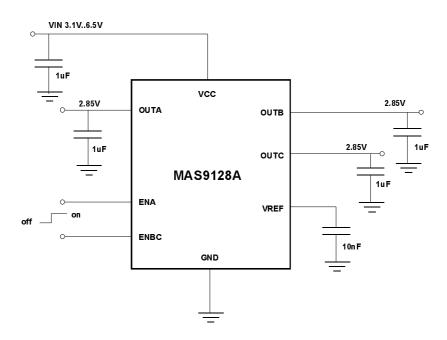
◆ Supply Voltage, Voltage Regulators

The device is supplied with 3.1V to 6.5V battery voltage under normal conditions. An internal band gap voltage reference is used to generate the reference voltage for all three voltage regulators. The reference voltage is routed via an internal 20kOhm Resistor to an external pin where a filter capacitor can be connected in order to reduce the noise level of all three regulators. The startup time of the reference voltage is then determined by the value of the bypass capacitor at pin VREF.

♦ Enable Pins

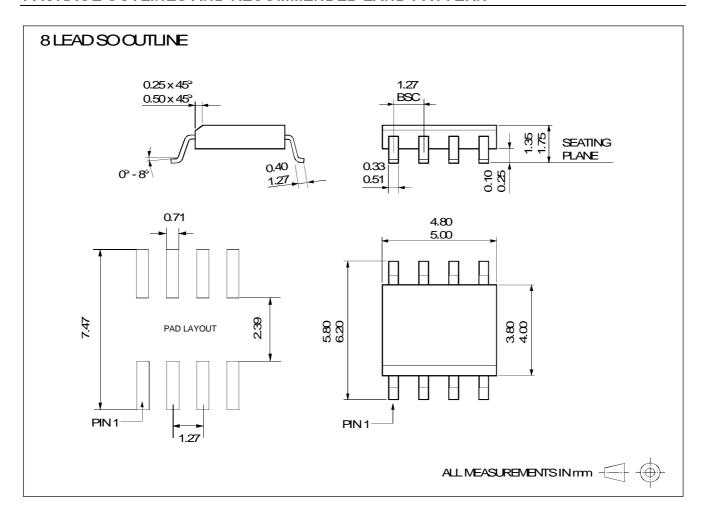
Each regulator can be enabled/disabled by the two enable pins ENA and ENBC. Pin ENA controls regulator LDO_A and pin ENBC controls both regulators LDO_B and LDO_C. If both enable pins are forced low, the internal voltage reference and

internal bias source are turned off in order to save power. A common enable for all three regulator outputs is designed, but connected to VDD internally for the SOIC8 version of MAS9128A.


◆ Regulators

The device contains three 2.85V low dropout CMOS regulators with maximum output currents of 100mA, 70mA and 50mA. There is a mask option to modify the output voltage to 2.55V, 2.70V, 2.85V, 3.00V or 3.15V. The IC has thermal protection in order to prevent thermal destruction especially at high ambient temperatures. Maximum output current of each regulator is limited by an internal circuitry. The regulation loop of the regulators is optimized to work with low ESR ceramic buffer capacitors at the output.

Logic table for Enable inputs


ENA	ENBC	LDO_A	LDO_B	LDO_C	VREF
1	1	ON	ON	ON	ON
1	0	ON	OFF	OFF	ON
0	1	OFF	ON	ON	ON
0	0	OFF	OFF	OFF	OFF

APPLICATION INFORMATION

PACKAGE OUTLINES AND RECOMMENDED LAND PATTERN

ORDERING INFORMATION

		k	
MAS9128AS	LDO Voltage Regulator IC	SO8	
MAS9128AS-T	LDO Voltage Regulator IC	SO8	Tape and Reel

LOCAL DISTRIBUTOR		

MICRONAS	CONTACTS
-----------------	----------

Micronas Semiconductor GmbH	Tel. (08165) 9521 0	
Lohweg 29	Tel. Int. + 49 8165 9521 0	
D-85375 NEUFAHRN, GERMANY	Telefax + 49 8165 9521 99	
Micronas Semiconductor SA	tel. (032) 847 0111	
Ch. Chapons-des-Prés	Tel. Int. +41 32 847 0111	
CH-2022 BEVAIX, SWITZERLAND	Telefax +41 32 846 1930	

Micronas Oy	Tel. (09) 80521
Kamreerintie 2, P.O.Box 51	Tel. Int. +358 9 80521
FIN-02771 ESPOO, FINLAND	Telefax +358 9 8053213

NOTICE

Micronas reserves the right to make changes to the products contained in this data sheet in order to improve the design or performance and to supply the best possible products. Micronas assumes no responsibility for the use of any circuits shown in this data sheet, conveys no license under any patent or other rights unless otherwise specified in this data sheet, and makes no claim that the circuits are free from patent infringement. Applications for any devices shown in this data sheet are for illustration only and Micronas makes no claim or warranty that such applications will be suitable for the use specified without further testing or modification.

End of Data Sheet

