


Current Transducer LT 10000-S

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

$I_{PN} = 10000 A$

Electrical data

$oldsymbol{I}_{PN} \ oldsymbol{I}_{P} \ oldsymbol{R}_{M}$	Primary nominal r.m.s. current Primary current, measuring range (1 s/mn) Measuring resistance		10000 0 ± 15000 R R		A A
· M	3		$R_{_{Mmin}}$	R_{Mmax}	
	with ± 48 V	@ ± 10000 A _{max}	0	8	Ω
		@ ± 12000 A _{max}	0	1	Ω
	with ± 60 V	@ ± 10000 A max	0	20	Ω
		@ ± 15000 A max	0	1.5	Ω
I _{SN}	Secondary nominal r.n	n.s. current	1		Α
K _N	Conversion ratio		1:10000		
v c	Supply voltage (± 5 %)		± 48	60	V
I _C	Current consumption		$40(@\pm60V)+I_{S} mA$		
V _d	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn		10 ¹⁾	· ·	kV
•			1 ²⁾		kV

Accuracy - Dynamic performance data

\mathbf{X}_{G}	Overall accuracy @ I_{PN} , T_{A} = 25°C Linearity		± 0.3 < 0.1	% %
l _ο l _{οτ} t _r di/dt f	Offset current @ $\mathbf{I}_{P} = 0$, $\mathbf{T}_{A} = 25^{\circ}\mathrm{C}$ Thermal drift of \mathbf{I}_{O} Response time ³⁾ @ 90 % of $\mathbf{I}_{P \text{ max}}$ di/dt accurately followed Frequency bandwidth (-1 dB)	- 25°C + 70°C	Typ ± 0.6 < 1	

General data

_			
T _A	Ambient operating temperature	- 25 + 70	°C
T _s	Ambient storage temperature	- 40 + 85	°C
\mathbf{R}_{s}	Secondary coil resistance @ T _A = 70°C	35	Ω
m	Mass	17	kg
	Standards 4)	EN 50178	

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated case.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- · Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Notes: 1) Between primary and secondary + shield

2) Between secondary and shield

3) With a di/dt of 100 A/µs

⁴⁾ A list of corresponding tests is available

980708/6