

Current Transducer LF 305-S

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

ectrical data Primary nominal curre				
Primary nominal curre	ant maa			
	Primary nominal current rms		300	
Primary current, measuring range		0 ± 500		A
Measuring resistance)	R _{M mini}	$R_{_{Mme}}$	ixi
with ± 12 V	@ ± 300 A _{max}	0	39	Ω
	@ ± 500 A max	0	12	Ω
with ± 15 V	@ ± 300 A	0	58	Ω
	@ ± 500 A	0	22	Ω
with ± 20 V	@ ± 300 A _{max}	15	93	Ω
	@ ± 500 A _{max}	15	45	Ω
Secondary nominal current rms		150		mA
Conversion ratio		1 : 200	0	
Supply voltage (± 5 %)		±12	20	V
Current consumption		26 (@±2	20V)+ I	ू mA
	with ± 12 V with ± 15 V with ± 20 V Secondary nominal c Conversion ratio Supply voltage (± 5 %		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Accuracy - Dynamic performance data

X _G e	Overall accuracy @ \mathbf{I}_{PN} , $\mathbf{T}_{A} = 25^{\circ}C$		±0.4		%
e	Linearity error		< 0.1		%
			Тур	Maxi	
I _o	Offset current @ $I_P = 0$, $T_A = 25^{\circ}C$			± 0.20	mΑ
I _{OM}	Magnetic offset current ¹⁾ @ $I_P = 0$ and	I specified $R_{_{M}}$			
	after an overload of 3 x I _{PN}			± 0.08	mΑ
I _{OT}	Temperature variation of I_{o} -	10°C + 70°C	± 0.1	± 0.30	mΑ
t _{ra}	Reaction time @ 10 % of I _{PN}		< 500		ns
ţ	Response time ²⁾ to 90 % of I _{PN} step		< 1		μs
di/dt	di/dt accurately followed		> 100		A/µs
BW	Frequency bandwidth (- 1 dB)		DC ^	100	kHz

\mathbf{T}_{A} \mathbf{T}_{S} °C - 10 .. + 70 Ambient operating temperature Ambient storage temperature - 25 .. + 85 °C Rs Secondary coil resistance @ $T_{A} = 70^{\circ}C$ 25 Ω Mass m 95 g Standards EN 50178: 1997

 $I_{_{\rm PN}} = 300 \, {\rm A}$

Features

- Closed loop (compensated) current transducer using the Hall effect
- Isolated plastic case recognized according to UL 94-V0.

Advantages

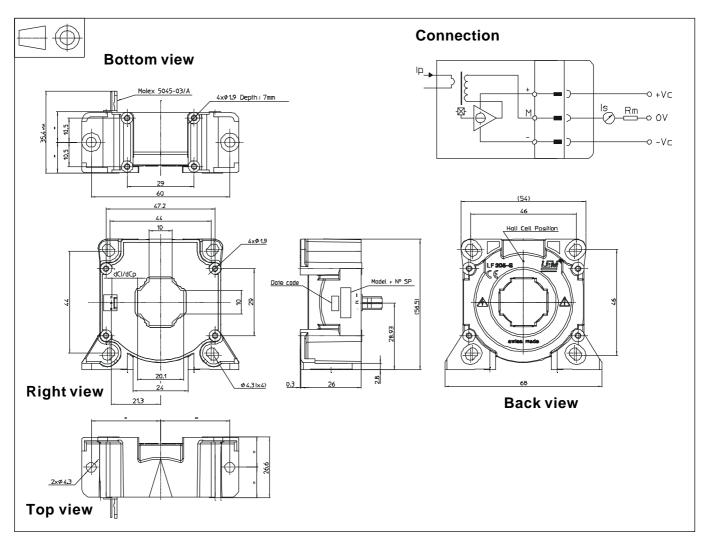
- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Application domain

• Industrial.


Notes: ¹⁾ The result of the coercive field of the magnetic circuit

²⁾ With a di/dt of 100 A/ μ s.

page 1/3

Dimensions LF 305-S (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

General toleranceTransducer fastening	± 0.5 mm
Vertical position	2 holes $arnothing$ 4.3 mm
	2 steel screws M4
Recommended fastening torque	3.2 Nm or 2.37 LbFt.
or	4 holes \oslash 1.9 mm, depth : 7 mm
	4 screws PTKA 25, length: 6 mm
Recommended fastening torque	0.7 Nm or 0.52 LbFt.
Flat lying position	4 holes $arnothing$ 4.3 mm
	4 steel screws M4
Recommended fastening torque	2.9 Nm or 2.14 LbFt.
or	4 holes \varnothing 1.9 mm, crossing
	4 screws PTKA 25, length:10 mm
Recommended fastening torque	0.75 Nm 0.55 LbFt.
 Primary through-hole 	Ø 20 mm
 Connection of secondary 	Molex 5045-03/A

Remarks

- + $\mathbf{I}_{_{\! \mathrm{S}}}$ is positive when $\mathbf{I}_{_{\! \mathrm{P}}}$ flows in the direction of the arrow
- Temperature of the primary conductor should not exceed 100°C
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.

page 3/3