

Data Sheet

Rev. 1.00 / April 2013

Secure Low-Power Wireless IPv6 Module

Interface ICs

Persistent and Structured

Brief Description

The ZWIR4512 enables secure low-power wireless IPv6 communication for sensors and small devices. ZMDI provides a user-programmable, royalty-free 6LoWPAN stack with mesh routing capability with the ZWIR4512. 6LoWPAN is an Internet Engineering Task Force (IETF) standard for building wireless, low-power IP-based sensor and device networks. These networks can easily be integrated into existing IT infrastructure or operate autonomously.

Secure communication is provided by standardcompliant implementations of the Internet Protocol Security (IPSec) protocol suite and the Internet Key Exchange Protocol version 2 (IKEv2), which enable highly secure end-to-end communication, including over unsecure network nodes.

The module is powered by an ARM[®] Cortex[™]-M3 microcontroller* and provides a rich set of GPIO and peripheral interfaces. Up to 192 kB of flash and 32 kB of RAM are available for user applications. Different low power modes are provided to save energy in battery-operated devices. The modules provide superior radio properties without the need for complicated external RF design.

Hardware Features

- License-free 868/915 MHz frequency bands
- ARM[®] Cortex[™]-M3 32-bit microcontroller
- Up to 192kB flash and up to 32kB RAM for user applications
- Unique EUI64 address
- 4 (10) channels in EU (US) mode
- 19 (ZWIR4512AC1) or 21 (ZWIR4512AC2) GPIOs with multiplexed peripheral functions:
 - 2 x UART, SPI, 3 x ADC, 2 x DAC, 11 x PWM, USB, CAN, I²C^{™†}, 8 x Timer
 - Several 5V tolerant I/Os available
- Low current consumption:
 - 3.5 µA Standby Mode
 - 13.5 mA Receive Mode
 - 18.5 mA Transmit Mode @ 0 dBm
- Modulation schemes
 - BPSK (20 kBps EU, 40 kBps US)
 - O-QPSK (100 kBps EU, 250 kBps US)
- Receiver sensitivity: up to -110 dBm
- TX output power: up to 10 dBm (US Mode)

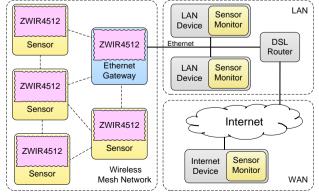
* ARM[®] and Cortex[™] are trademarks of ARM, Ltd. † $I^2C^{™}$ is a trademark of NXP.

Firmware Features

- Serial command interface with built-in security and over-the-air update (OTAU) functionality
- Royalty-free library bundle for custom firmware
 - 6LoWPAN communication library with mesh routing capability
 - IPSec and IKEv2 security libraries
 - Over-the-air update library
 - Several peripheral libraries

Benefits

- Uniquely simple programmability
- Standard-compliant security solution
- No need for external microcontroller
- Plug-and-play integration into local and wide-area networks
- No RF design required
- 2D barcode label containing MAC address
- Superior radio propagation
- ETSI/FCC certified

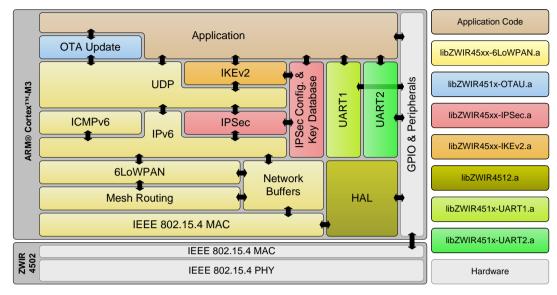

Available Support

- Development Kit
- Programming guide and application notes
- Ethernet, USB and UART gateways
- Example programs demonstrating C-API usage

Physical Characteristics

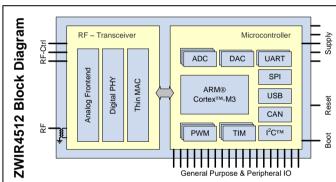
- Supply voltage: 2.0 V to 3.6 V
- Operating temperature: -40 °C to +85 °C
- 30-pin edge-board contact package or 32-pin land grid array package

Typical ZWIR4512 Application Setup


For more information, contact ZMDI via wpan@zmdi.com.

^{© 2013} Zentrum Mikroelektronik Dresden AG — Rev. 1.00 — April 15, 2013. All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.

Secure Low-Power Wireless IPv6 Module


Stack Architecture

Applications

The ZWIR4512 serves as a universal secure radio communication module. Typical application examples include home and industry automation, health monitoring, smart metering / smart grid applications, and keyless entry systems.

Its very low current consumption makes the module suitable for battery-operated devices.

The Analog Mixed Signal Company

Ordering Information

-		
Product Sales Code	Description	Package
ZWIR4512AC1xA	Unprogrammed module for user application programs	30 pin SMT, 27.9 mm x 16.5 mm
ZWIR4512AC1xI	Preprogrammed module with serial command interface	30 pin SMT, 27.9 mm x 16.5 mm
ZWIR4512AC2xA	Unprogrammed module for user application programs	32 pin LGA, 23.1 mm x 15.1 mm
ZWIR4512AC2xI	Preprogrammed module with serial command interface	32 pin LGA, 23.1 mm x 15.1 mm
ZWIR4512-Devkit	Development Kit	

Sales and Further	Information	www.zmdi.	com wj	oan@zmdi.com
Zentrum Mikroelektronik Dresden AG Global Headquarters Grenzstrasse 28 01109 Dresden, Germany Central Office: Phone +49.351.8822.0 Fax +49.351.8822.600	ZMD America, Inc. 1525 McCarthy Blvd., #212 Milpitas, CA 95035-7453 USA USA Phone +855.275.9634 Phone +408.883.6310 Fax +408.883.6358	Zentrum Mikroelektronik Dresden AG, Japan Office 2nd Floor, Shinbashi Tokyu Bldg. 4-21-3, Shinbashi, Minato-ku Tokyo, 105-0004 Japan Phone +81.3.6895.7410 Fax +81.3.6895.7301	ZMD FAR EAST, Ltd. 3F, No. 51, Sec. 2, Keelung Road 11052 Taipei Taiwan Phone +886.2.2377.8189 Fax +886.2.2377.8199	Zentrum Mikroelektronik Dresden AG, Korea Office U-space 1 Building 11th Floor, Unit JA-1102 670 Sampyeong-dong Bundang-gu, Seongnam-si Gyeonggi-do, 463-400 Korea Phone +82.31.950.7679 Fax +82.504.841.3026
European Technical Support Phone +49.351.8822.7.772 Fax +49.351.8822.87.772	Zentrum Mikroelektronik Dresden A information furnished hereby is beli	lies to a product under development. Its of G (ZMD AG) assumes no obligation reg ieved to be true and accurate. Howeve any special, indirect, incidental, or conse	arding future manufacture unless r, under no circumstances shall	s otherwise agreed to in writing. The ZMD AG be liable to any customer,
European Sales (Stuttgart) Phone +49.711.674517.55 Fax +49.711.674517.87955	any way related to the furnishing, p customer, licensee or any other thir	erformance, or use of this technical data d party, and any such customer, license arising out of the furnishing, performance	 ZMD AG hereby expressly disc e and any other third party hereb 	claims any liability of ZMĎ AG to any by waives any liability of ZMD AG for

© 2013 Zentrum Mikroelektronik Dresden AG — Rev. 1.00 — April 15, 2013

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.

Secure Low-Power Wireless IPv6 Module

Contents

1	Modul	e Characteristics	6
	1.1. At	psolute Maximum Ratings	6
	1.1.1.	Voltage Characteristics	6
	1.1.2.	Current Characteristics	6
	1.1.3.	Thermal Characteristics	
	1.2. O	perating Conditions	6
	1.2.1.	General Operating Conditions	6
	1.2.2.	Current Consumption per Operating Mode	8
2	Modul	e Description	8
		adio Transceiver	
		icrocontroller	9
	2.2.1.	MCU Core	
	2.2.2.	Peripherals and Interfaces	9
	2.2.3.	Programming and Debugging	
	2.3. Fi	rmware	
	2.3.1.	Serial Command Interface (SCI) Firmware	
	2.3.2.	C Application Programming Interface (C-API)	
		ower Modes	
	2.4.1.	Run Mode	
	2.4.2.	Sleep Mode	
	2.4.3.	Stop Mode	
	2.4.4.	Standby Mode	
3	Applic	ation Circuits	11
	3.1. Po	ower Supply	11
		eset and Boot Select	
		ebug Access	
		ntenna	
4			
5		ge Dimensions and PCB Footprints	
		NIR4512AC1	
		NIR4512AC2	
6		ring Information	
7	Custor	mization	23
8		cation	
		uropean R&TTE Directive Statements	
	8.2. Fe	ederal Communication Commission Certification Statements	
	8.2.1.	Statements	
	8.2.2.	Requirements	23
	8.3. Su	upported Antennas	24
9		ng Information	
1() Relate	ed Documents	24
11	1 Glossa	ary	25
12	2 Docun	nent Revision History	25

Data Sheet	© 2013 Zentrum Mikroelektronik Dresden AG — Rev. 1.00	4 of 25
April 15, 2013	All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.	4 01 25

List of Figures

Figure 3.1	Power Supply Schemes	11
Figure 3.2	External Circuitry for /RESET and BSEL	
Figure 3.3	JTAG / SWD Connection for Programming and Debugging	13
Figure 4.1	ZWIR4512ACx Pinout	14
Figure 5.1	ZWIR4512AC1 Package Drawing (top, side, and bottom view)	20
Figure 5.2	ZWIR4512AC1 Recommended PCB Footprint (in millimeters)	20
Figure 5.3	ZWIR4512AC2 Package Drawing (top, side and bottom view)	21
Figure 5.4	ZWIR4512AC2 Recommended PCB Footprint (in millimeters)	21
Figure 6.1	Recommended Temperature Profile for Reflow Soldering (according to J-STD-020D)	22
Figure 8.1	FCC Compliance Statement to be Printed on Equipment Incorporating ZWIR4512 Devices	24

List of Tables

Table 2.1	Power Modes Overview	10
Table 3.1		
Table 4.1	ZWIR4512ACx Pin Description	15
Table 4.2	ZWIR4512ACx GPIO Remapping	
Table 4.3		
Table 5.1	ZWIR4512AC1 Physical Dimensions and Tolerances	20
Table 5.2		
Table 6.1	Soldering Profile Parameters (according to J-STD-020D)	22

Data Sheet	© 2013 Zentrum Mikroelektronik Dresden AG — Rev. 1.00	
	All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the	5 of 25
April 15, 2013	prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.	

1 Module Characteristics

1.1. Absolute Maximum Ratings

The absolute maximum ratings are stress ratings only. The device might not function or be operable above the operating conditions. Stresses exceeding the absolute maximum ratings might also damage the device. In addition, extended exposure to stresses above the operating conditions might affect device reliability. ZMDI does not recommend designing to the "Absolute Maximum Ratings."

1.1.1. Voltage Characteristics

Parameter	Symbol	Min	Max	Unit
Main supply voltage	V _{cc}	-0.3	4	
Backup supply voltage	V _{BAT}	-0.3	4	V
Input voltage at 5V-tolerant GPIO pin	V	-0.3	5.5	V
Input voltage at any other GPIO pin	V _{GPIO}	-0.3	V _{CC} +0.3	

1.1.2. Current Characteristics

Parameter		Max	Unit
Maximum total current consumption	Ivcc	175	
Driving strength of each GPIOx pin		±25	mA
Driving strength of RF-control pins (PACTLN, PACTLP, DIG1)	I _{RFCTRL}	8	

1.1.3. Thermal Characteristics

Parameter		Value	Unit
Storage temperature range	T _{STOR}	-40 to +125	℃ ℃
Ambient temperature range	T _{AMB}	-40 to +85	Ũ

1.2. Operating Conditions

1.2.1. General Operating Conditions

Note: See important notes at the end of the table.

Parameter	Symbol	Min	Тур	Max	Unit	
Electrical Characteristics						
Main supply voltage – ADC not used	V _{CC}	2.0		3.6		
Main supply voltage – ADC used	V _{cc}	2.4		3.6		
Backup supply voltage	V _{BKUP}	1.8		3.6		
Digital I/O high level input voltage	V _{IH}	$V_{CC} - 0.4$			V	
Digital I/O low level input voltage	V _{IL}			0.4		
Digital I/O high level output voltage	V _{OH}	$V_{CC} - 0.4$				
Digital I/O low level output voltage	V _{OL}			0.4		

 Data Sheet
 © 2013 Zentrum Mikroelektronik Dresden AG — Rev. 1.00
 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
 6 of 25

Secure Low-Power Wireless IPv6 Module

Par	ameter	Symbol	Min	Тур	Max	Unit
	МС	CU Clock Charact	eristics			
MCU core clock freque	ncy ¹⁾	f _{AHB}	8		64	MHz
MCU core clock freque	ncy accuracy range	Δf_{AHB}	-2		2.5	%
MCU peripheral bus 1 of	clock frequency 2)	f _{APB1}		4		
MCU peripheral bus 2 d	clock frequency 2)	f _{APB2}		8		MHz
		RF Parameter	s			
Frequency range		f _{RF}	865		928	MHz
Output power ³⁾			-11		10	dBm
Output power tolerance			-3		+3	dB
Receiver sensitivity	BPSK, EU Mode			-110		dBm
	BPSK, US Mode			-108		
	QPSK, EU Mode			-101		
	QPSK, US Mode			-101		
Gross data rate	BPSK, EU Mode			20		
	BPSK, US Mode			40		
	QPSK, EU Mode			100		kBit/s
	QPSK, US Mode			250		
Channel spacing	EU Mode			1		
	US Mode			2		MHz
Number of channels	EU Mode ⁴⁾			1 (+3)		
	US Mode			10		
Input/output impedance	; ;			50		Ω
Frequency offset			-10		+10	kHz

1) The f_{CORE} clock can be configured to be 8, 16, 32, or 64 MHz. After reset, the clock is set to 8 MHz.

2) f_{APB1} and f_{APB2} are derived from f_{AHB} . Therefore, the same tolerances apply to these clocks.

3) 10 dBm output power is only available in US Mode; EU Mode provides 5 dBm maximum output power.

4) The IEEE802.15.4 standard defines only 1 channel for EU Mode, but extension channels are available in almost all EU countries.

Data Sheet	© 2013 Zentrum Mikroelektronik Dresden AG — Rev. 1.00	
	All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.	7 of 25

1.2.2. Current Consumption per Operating Mode

Operating Mode	Condition	Typ ¹⁾	Unit
	Receiver active	13.5	
	Transmitter active, BPSK, 4dBm	23.5	
Due Made	Transmitter active, QPSK, 4dBm	22.9	
Run Mode	Transmitter active, BPSK, 0dBm	19.1	mA
	Transmitter active, QPSK, 0dBm	18.5	
	TRX Off	4.4	
Sleep Mode	TRX Off, RTC running	4.2	
Stop Mode	TRX Off, RTC running	23.5	
Standby Mode	TRX Off, RTC running	3.7	μΑ
1) Current consumption values r	efer to devices operating at 25°C with an application that does not generate a work	kload on the MCU.	

2 Module Description

The ZWIR4512 is a programmable wireless IPv6 communication module. Communication is based on 6LoWPAN, a free and open communication standard developed by the Internet Engineering Task Force (IETF). This standard specifies how to transmit IPv6 (Internet Protocol Version 6) packets over low-power wireless personal area networks.

ZWIR4512 modules are available with a preprogrammed command interface, allowing modem-like communication based on simple commands sent over a serial interface. Alternatively, the module is freely programmable on the basis of an application programming interface (API) that exposes abstract communication functionality to the programmer.

Both software options offer secure communication on the basis of the IP Security (IPSec) protocol suite. Additionally, an implementation of the Internet Key Exchange Protocol version 2 (IKEv2) is provided, in order to make key management as easy as possible. IPSec and IKEv2 are the mandated standards for securing IPv6 networks. Refer to *ZWIR45xx Application Note—Using IPSec and IKEv2 in 6LoWPANs* for more detailed information about IPSec and IKEv2.

The module comprises an STM32F103RC ARM[®] Cortex[™]-M3 microcontroller from ST Microelectronics and a ZWIR4502 transceiver from ZMDI. These components ensure leading-edge performance values at very low power consumption. The module provides a hardware-programmed 64-bit MAC address that is guaranteed to be globally unique.

2.1. Radio Transceiver

The module includes ZMDI's ZWIR4502 radio transceiver. This circuit performs modulation and demodulation of outgoing and incoming data, respectively. The modulation scheme is configurable according to the IEEE802.15.4 standard. The radio transceiver is never accessed directly by application code. This task is performed by the communication stack, which encapsulates such low-level functionality in abstract functions.

Data Sheet	\odot 2013 Zentrum Mikroelektronik Dresden AG — Rev. 1.00	
4 145 0040	All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.	8 of 25

2.2. Microcontroller

The protocol stack and the user application are executed on an STM32F103RC microcontroller (MCU) from ST Microelectronics. It provides 256 kB flash and 48 kB SRAM memory. The MCU provides a rich set of peripherals and a number of general purpose input/output (GPIO) ports. The GPIO ports of the module are directly connected to the GPIOs of the MCU. Refer to Table 4.1 for an exact mapping.

2.2.1. MCU Core

The MCU core is an ARM[®] Cortex[™]-M3. This is a 32-bit RISC core with a performance of 1.25 DMIPS/MHz. Using ZMDI's software stack, the maximum operating frequency is 64 MHz. This allows for computational intensive applications. In order to save power, the core can be shut off completely, waking up only on external activity.

2.2.2. Peripherals and Interfaces

The module was designed to make maximum use of the controller's internal peripherals. Up to 21 digital general purpose I/Os can be used by the application. Most of these I/Os have alternative functions. Some of them are 5V-tolerant. Table 4.1 shows the most commonly used functions available for each interface. Table 4.3 shows all functionalities on a single page, indicating which peripherals must not be used in parallel as their GPIOs are interfering.

In addition to communication interfaces, the module also provides signal conversion peripherals. Three analog-todigital converters (ADCs), two digital-to-analog converters (DACs) and two pulse-width modulation (PWM) peripherals are available.

2.2.3. Programming and Debugging

Programming and debugging the module is typically done via JTAG. All required MCU ports are connected to module pins for that purpose. Alternatively, Serial Wire Debug (SWD) can be used for programming and debugging. This requires just two pins that have to be reserved, providing two additional GPIO pins.

Alternatively, if debug functionality is not required, it is possible to program the module over a two-wire UART interface. For that purpose, the MCU's internal boot-loader must be started. This is done by holding the BSEL pin of the module high while a reset is performed or the module is powered on. Refer to the MCU documentation for more information about serial programming.

2.3. Firmware

2.3.1. Serial Command Interface (SCI) Firmware

A module programmed with the Serial Command Interface firmware acts as a network processor. In this configuration, the module is controlled over a serial interface that is SPI, USB, or one of the two UARTs. The SCI firmware provides all standard communication functions for data transmission and reception, as well as all security functions and over-the-air update (OTAU) functionality. Access to internal peripherals is limited to digital control of the GPIO pins. Typically, an external microcontroller or a PC is required to control module operation. However, for simple sensing or acting applications, it is also possible to configure the module to run autonomously without the need for an external controller. Refer to the *ZWIR45xx Serial Command Interface Manual* for further information.

2.3.2. C Application Programming Interface (C-API)

A C-API is provided for applications that should run directly on the embedded microcontroller. Communication and security functionalities are encapsulated in a set of libraries that export functions for accessing and controlling them. The library architecture is modular, allowing tailoring applications to user needs. Applications running on the microcontroller can make use of the rich set of peripherals that are provided by the controller.

Data Sheet	© 2013 Zentrum Mikroelektronik Dresden AG — Rev. 1.00	
April 15, 2013	All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.	9 of 25

Depending on the library configuration, there are up to 192 kB of flash and 32 kB of RAM available for the user application. This is sufficient even for complex applications with high memory needs. If over-the-air update (OTAU) functionality is required, the amount of flash available for user applications is reduced to one half. For further information on C-API programming and OTAU, please refer to the ZWIR451x Programming Guide and the ZWIR45xx Over-the-Air Update Manual.

2.4. Power Modes

The ZWIR4512 module provides a set of operating modes with different capabilities and power requirements. This document only highlights the main features of these operating modes. Table 2.1 gives an overview of the characteristics of the available power modes. See section 1.2.2 for a table of typical current consumption in the different modes.

Refer to the ZWIR451x Programming Guide for detailed usage instructions for the low-power modes.

Mode	Wakeup		Clock		Context ¹⁾	I/O	Transceiver
	Source	Time	MCU Core	Peripherals			
Run			On	On ²⁾	Retained	As configured	On ³⁾
Sleep	Any IRQ	1.8 µs	Off	Off ⁴⁾	Retained	As configured	Off ⁴⁾
Stop RTC IRQ External IRQ		5.4 µs	Off	Off	Retained	As configured	Off ⁴⁾
Standby	RTC IRQ Wakeup pin	50 µs	Off	Off	Lost	Analog input	Off
always	to the status of the RAM and a available.		•		U U		<u>.</u>

Table 2.1 Power Modes Overview

3) Can be powered off by application code.

4) Remains if peripheral/transceiver is selected as wakeup source.

2.4.1. **Run Mode**

In Run Mode, all functions of the module are available. The microcontroller and all its peripherals are powered. Typically the transceiver is also powered, but it can be disabled by software. The module enters Run Mode automatically after startup. The application software must switch to one of the other operating modes if required.

2.4.2. Sleep Mode

In Sleep Mode, the microcontroller core is not clocked. The power state of the transceiver and the microcontroller peripherals depends on the wakeup configuration. All peripherals that are selected as a wakeup source continue to operate. After wakeup, the application program continues execution at the position it was stopped. Sleep Mode allows reacting to external events such as the reception of data, external interrupts, or timer events. The power consumption in this mode strongly depends on which peripherals are enabled. The I/O configuration is not changed during Sleep Mode.

2.4.3. Stop Mode

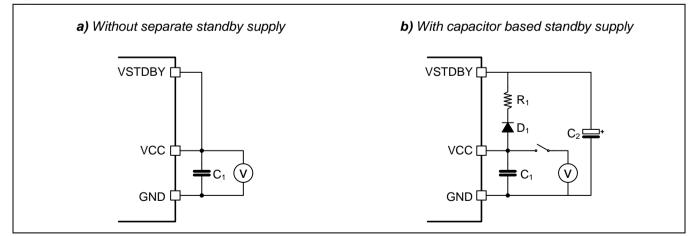
Stop Mode is an ultra-low-power mode with RAM retention. The MCU core and the MCU peripherals are not clocked. Only the internal real-time clock or any external pin can be used for triggering wakeup from Stop Mode. After wakeup, the program continues execution at the position it was stopped. In Stop Mode, all I/Os remain in the configuration that was active when entering Stop Mode.

Data Sheet	© 2013 Zentrum Mikroelektronik Dresden AG — Rev. 1.00	
	All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.	10 of 25

2.4.4. Standby Mode

Standby Mode is the lowest power mode. The transceiver and all microcontroller peripherals are consequently powered off. RAM contents are lost. Waking up from Standby Mode can be triggered by a real-time-timer event or by one dedicated pin. When going to Standby Mode, all I/Os are put into analog input mode, so the application circuit must ensure that external components receive defined signal levels if required. When the module exits Standby Mode, it is restarted from the reset handler in the same sequence as the restart after power-on or after the reset button has been pressed.

3 Application Circuits


ZWIR4512 modules are designed to require minimal external circuitry. The following sections illustrate how modules must be connected in order to ensure proper power supply, reset behavior, programmability, and radio performance. Instructions for the connection of GPIO pins are not given.

3.1. Power Supply

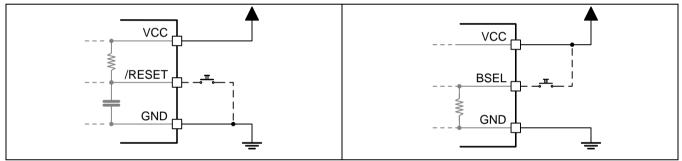
All internal components of the ZWIR4512 that require a stable power supply are internally decoupled with a number of capacitors. Nevertheless, the module requires one external decoupling capacitor between VCC and GND. This is the minimal external circuitry required for proper operation.

The module provides two different power supply pins: VCC and VSTDBY. V_{CC} is the normal supply voltage that must be applied in Run, Sleep, or Stop Mode. During Standby Mode, the module is powered by V_{STDBY} and V_{CC} can be switched off.

Figure 3.1 shows two possible power supply schemes. Scheme a) connects VSTDBY to the same voltage source as VCC. This is the commonly used configuration. However, scheme b) allows switching off V_{CC} in Standby Mode. This can help reduce power dissipation in applications with ultra-low power requirements. During the complete standby phase, VSTDBY is powered from a buffering capacitor.

Figure 3.1 Power Supply Schemes

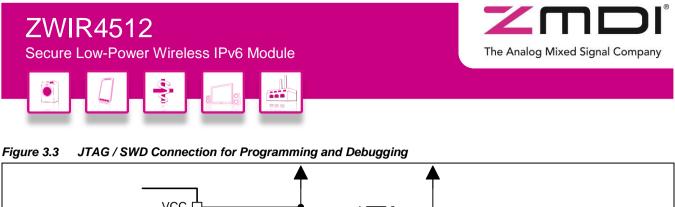
Data Sheet	© 2013 Zentrum Mikroelektronik Dresden AG — Rev. 1.00	
	All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.	11 of 25

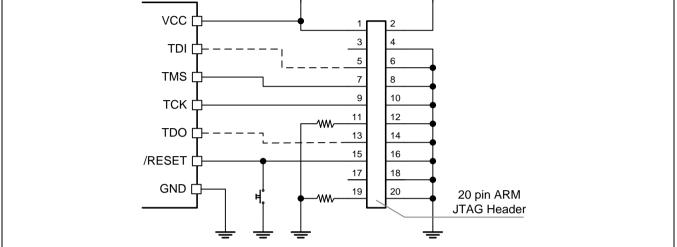

Table 3.1 External Power Supply Components

Symbol	Function	Value/Comment	
C ₁	Decoupling capacitor	Mandatory, 10 μF	
R ₁	Charge current limitation	6.8 kΩ	
D ₁	Buffering capacitor discharge protection	Schottky diode; e.g., BAT54-02V	
C ₂	Buffering capacitor	≥ 0.1 µF	

3.2. Reset and Boot Select

The /RESET pin is de-bounced and has a pull-up resistor on the PCB. Thus, a push-button can be connected directly to GND or the pin can be left unconnected if it is not required. The boot select pin (BSEL) is pulled down internally. If BSEL is not required, it can be left unconnected. Figure 3.2 shows how these pins are connected externally and illustrates the internal circuitry.





3.3. Debug Access

The ZWIR4512 provides debug access by means of a JTAG or SWD interface. Figure 3.3 shows an example of connecting the module with a 20-pin standard ARM[®] JTAG header. If no JTAG connection is required, the dotted connections can be left out and two additional pins are available as GPIOs.

Data Sheet	© 2013 Zentrum Mikroelektronik Dresden AG — Rev. 1.00	
	All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the	12 of 25
April 15, 2013	prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.	

3.4. Antenna

There are two options to connect an external antenna. The antenna can be connected to the module using a coaxial cable that is mounted on the U.FL connector, or an external antenna terminal on the host PCB can be connected to the ANT pin. If the on-board U.FL connector is used, the ANT pin must be left unconnected. An external antenna must be connected with a 50 Ω microstrip wire.

Data Sheet	© 2013 Zentrum Mikroelektronik Dresden AG — Rev. 1.00	
	All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the	13 of 25
April 15, 2013	prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.	

4 Pinout

Each of the ZWIR4512 GPIO pins may have different functionalities, controllable by software. The most commonly used functions available on each pin are listed in Table 4.1. Furthermore, the GPIO peripheral functions are shown as an overview in Table 4.3. The full list of available functions of each pin can be obtained from the STM32F103xC data sheet.

Some peripheral I/O functions are available through different pins. The default GPIO pin for each peripheral function is marked with an \blacklozenge in Table 4.3. When it is possible to remap a peripheral function to another module pin, this is marked with a letter. The corresponding remapping function is described in Table 4.2.

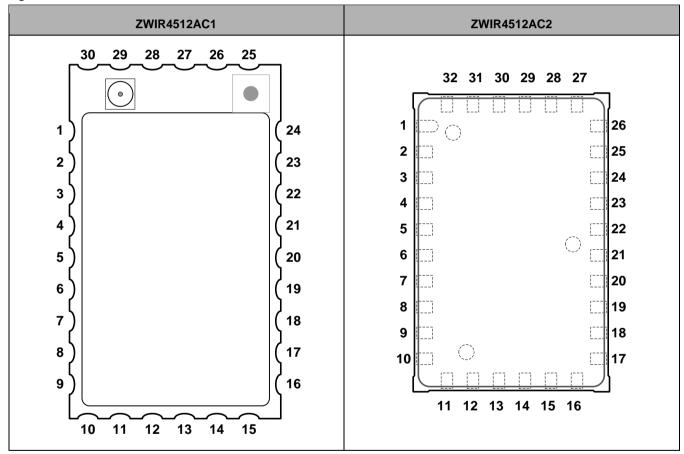


Figure 4.1 ZWIR4512ACx Pinout

Data Sheet	© 2013 Zentrum Mikroelektronik Dresden AG — Rev. 1.00	
April 15, 2013	All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.	14 of 25

Secure Low-Power Wireless IPv6 Module

Table 4.1 ZWIR4512ACx Pin Description

Pins							
ZWIR4512AC1	ZWIR4512AC2	Name	MCU Port	Type ¹⁾	5V	API Function ^{2), 3)}	SCI Function ^{3), 4)}
1	1	GPIO7	PA7	Ю	IO GPIO SPI1 – MOSI ADC1 / ADC2 – channel 7 PWM		SPI – MOSI
2	2	GPIO6	PA6	Ю		<i>GPIO</i> SPI1 – MISO ADC1 / ADC2 – channel 6 PWM	SPI – MISO
3	3	GPIO5	PA5	GPIO SPI1 – SCK		SPI – SCK	
4	4	GPIO4	PA4	Ю		<i>GPIO</i> SPI1 – NSS USART2 – CK DAC – OUT1 ADC1 / ADC2 – channel 4	<i>SPI – NSS</i> GPIO
5	5	GPIO3	PA3	Ю		<i>GPIO</i> USART2 – RX ADC1 / ADC2 / ADC3 – channel 3 PWM	<i>UART2 – RX</i> GPIO
6	6	GPIO2	PA2	Ю		<i>GPIO</i> USART2 – TX ADC1 / ADC2 / ADC3 – channel 2 PWM	UART2 – TX
7	7	GPIO1	PA1	Ю		<i>GPIO</i> USART2 – RTS ADC1 / ADC2 / ADC3 – channel 1 PWM	<i>GPIO</i> UART2 - RTS
8	8	GPIO0	PA0- WKUP	Ю		<i>GPIO</i> WKUP USART2 – CTS ADC1 / ADC2 / ADC3 – channel 0 PWM	<i>GPIO</i> UART2 CTS
9	9	GPIO12	PC13	Ю		<i>GPIO</i> TAMPER-RTC	GPIO

 Data Sheet
 © 2013 Zentrum Mikroelektronik Dresden AG — Rev. 1.00

 All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.
 15 of 25

Secure Low-Power Wireless IPv6 Module

Pi	ns								
ZWIR4512AC1	ZWIR4512AC2	Name	MCU Port	Type ¹⁾	5V	API Function ^{2), 3)}	SCI Function ^{3), 4)}		
18	10	VSTDBY	VBAT	S		Alternative Standby Mode power suppl	у		
10	11	/RESET	NRST	I	✓	Keset			
11	12	GND	GND	S		Ground			
12	13	GPIO9	PA10	Ю	✓	<i>GPIO</i> USART1 – RX PWM	<i>UART1 – RX</i> GPIO		
13	14	GPIO8	PA9	Ю	✓	<i>GPIO</i> USART1 – TX PWM	<i>UART1 – TX</i> GPIO		
14	15	VCC	VCC	S		Power supply			
15	16	BSEL	BOOT0	I		Boot mode selection			
n/a	17	GPIO15	PC14	ю		GPIO OSC32 – IN	GPIO		
n/a	18	GPIO16	PC15	ю		<i>GPIO</i> OSC32 – OUT	GPIO		
16	19	GPIO10	PA11	Ю	~	<i>GPIO</i> USART1 – CTS USB – D- CAN – RX PWM	<i>GPIO</i> UART1 – CTS		
17	20	GPIO11	PA12	Ю	✓	<i>GPIO</i> USART1 – RTS USB – D+ CAN – TX Timer Trigger (TIM1)	<i>GPIO</i> UART1 – RTS		
19	21	TDO	PB3	Ю	✓	<i>JTAG – TDO</i> GPIO PWM			
20	22	TMS	PA13	Ю	~	<i>JTAG – TMS, SWDIO</i> GPIO	GPIO		
21	23	TDI	PA15	Ю	~	<i>JTAG – TDI</i> GPIO	GPIO		
22	24	ТСК	PA14	IO	~	<i>JTAG – TCK, SWCLK</i> GPIO	GPIO		

Secure Low-Power Wireless IPv6 Module

	ame 1014	MCU Port	Type ¹⁾	5V ✓	API Function ^{2), 3)} GPIO I ² C [™] – SDA UART1 – RX	SCI Function ^{3), 4)} GPIO
6 GP	IO14	PB7	ю	~	l²C™ – SDA	GPIO
					PWM	
6 GP	IO13	PB6	Ю	~	<i>GPIO</i> I ² C™-SCL UART1 – TX PWM	GPIO
DI	IG1	-	0		Unused, leave unconnected	
B PAC	CTLN	-	0		PA control (differential) complementary output, leave unconnected if unused	
PAC	CTLP	-	0		PA control (differential), leave unconn	ected if unused
) G	ND	GND	S		Ground	
A	NT	-	IO		Antenna pin	
2 G	ND	GND	S		Ground	
3))	PAG PAG G A G	PACTLN PACTLP GND ANT GND	PACTLN - PACTLP - GND GND ANT - GND GND	PACTLN-OPACTLP-OGNDGNDSANT-IOGNDGNDS	PACTLN-OPACTLP-OGNDGNDSANT-IOGNDGNDS	DIG1 - O Unused, leave unconnected PACTLN - O PA control (differential) complementa unconnected if unused PACTLP - O PA control (differential), complementa unconnected if unused PACTLP - O PA control (differential), leave unconnected if unused GND GND S Ground ANT - IO Antenna pin

2) The listed functionalities include only the most important functionalities – please refer to the STM32F103xC data sheet for a full list.

3) Functions listed in italic letters are selected by default if the device is not reprogrammed. GPIOs are analog inputs by default.

4) Any pin marked as GPIO can be configured as indicator for incoming or outgoing packets on network or serial interfaces.

Data Sheet	© 2013 Zentrum Mikroelektronik Dresden AG — Rev. 1.00	
	All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the	17 of 25
April 15, 2013	prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.	

Secure Low-Power Wireless IPv6 Module

Table 4.2 ZWIR4512ACx GPIO Remapping

Name	Peripheral	Pin	Change	Required Action
А	UART1	RX	PA9 🗲 PB6	Write 1 _{BIN} to AFIO_MAPR[2]
		ТΧ	PA10 → PB7	(See sections 8.3 and 8.4.2 of the STM32F103xx Reference Manual.)i
		RTS	PA12 → Ø	
		CTS	PA11 → Ø	
В	Timer 1	CH1N	Ø ➔ PA7	Write 01 _{BIN} to AFIO_MAPR[11:10]
С	Timer 2	Ch1	PA1 → PB3	Write 01 _{BIN} to AFIO_MAPR[9:8]
		Ch2	PA0 → PA15	
D	JTAG	TDI	PA15 → Ø	Write 010 _{BIN} to AFIO_MAPR[26:24]
		TDO	PB3 → Ø	
E	JTAG	TMS	PA13 → Ø	Write 100 _{BIN} to AFIO_MAPR[26:24]
		ТСК	PA14 → Ø	
		TDI	PA15 → Ø	
		TDO	PB3 → Ø	

Data Sheet	\odot 2013 Zentrum Mikroelektronik Dresden AG — Rev. 1.00	
	All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.	18 of 25
	phor written consent of the copyright owner. The information furnished in this publication is subject to changes without holice.	

Secure Low-Power Wireless IPv6 Module

19 of 25

Table 4.3 ZWIR4512ACx GPIO Function Overview

	ZWIR4512AC2-Pin ZWIR4512AC1-Pin	1	2	3	4	5 5	6 6	7	8 8	9 9	13 12	14 13	17	18 -	19 16	20 17	21 19	22 20	23 21	24 22	25 23	2
	MCU - GPIO Port	A7	A6	A5	A4	A3	A2	A1	A0	C13	A10	A9	C14	C15	A11	A12	B3 ¹⁾	A13 ²⁾	A15 ¹⁾	A14 ²⁾	B7	В
	RX										٠										А	-
1	ТХ											٠										
UART1	RTS															♦ ,A						-
-	CTS														♦ ,A							
	RX					٠																T
.2	ТХ						٠															-
USART2	RTS							٠														
US/	CTS								٠													
	СК				٠																	
	MOSI	٠																				T
-	MISO		٠																			1
SPI1	SCK			٠																		-
	NSS				٠																	1
M	SDA																				٠	-
I²C™	SCL																					
_	D+										1				•							┢
USB	D-														•	٠						-
_	TX														•	·						-
CAN	RX														•	•						-
	andby Wakeup								•							•						┢
31									•													-
	T1 - Ch1N	В																				_
	T1 - Ch2											♦ ,B										
	T1 - Ch3										♦ ,B											
	T1 - Ch4								•						♦ ,B				C ¹⁾			-
	T2 - Ch1 T2 - Ch2							•	•								C ¹⁾		C /			-
	T2 - Ch2						♦,C	•									C ·					
_	T2 - Ch3					♦,C	▼ ,C															-
PWM	T3 - Ch4		•			▼ ,C																-
"	T3 - Ch2	٠	•																			-
	T4 - Ch1	•																				
	T4 - Ch2																				٠	-
	T5 - Ch1								•												•	-
	T5 - Ch2							•	•													-
	T5 - Ch3						•	•														+
	T5 - Ch4					•																-
_	Ch0								٠													┢
	Ch1							•	•													-
	Ch2						•	•														-
0	Ch3					•	•															-
ADC	Ch4				•																	-
	Ch5			•	•																	-
	Ch6		٠		-				-				-									+
	Ch7	٠			-								-									+
0	DAC1	,			•																	┢
DAC	DAC1 DAC2			•	•				<u> </u>					1								+
	TMS			•														♦ ³⁾				┢
c	TCK																	•		♦ ³⁾		+-
JTAG	TDI		-		-					-			-						♦ ³⁾	•		+
7	TDO																♦ ³⁾		•			+
-	SWDIO				1				1				1	1			•	♦,D ⁴⁾				┢
SWD																		, 0,		♦,D ⁴⁾		┝
	SWDCLK		1	1	1	1	1	1	1	1	1	1	1	1			1	1	1	, ∀ , U ″		1

All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.

© 2013 Zentrum Mikroelektronik Dresden AG — Rev. 1.00

Data Sheet

April 15, 2013

5 Package Dimensions and PCB Footprints

5.1. ZWIR4512AC1

Figure 5.1 ZWIR4512AC1 Package Drawing (top, side, and bottom view)

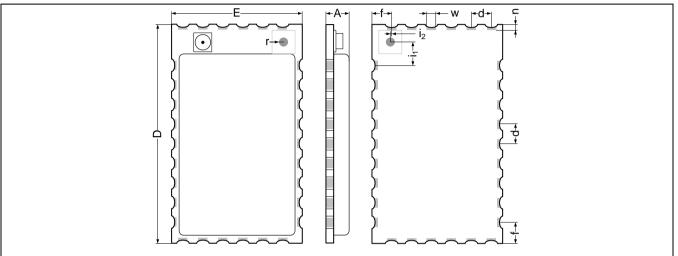
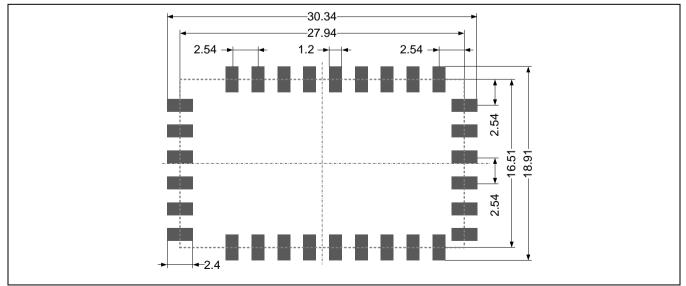
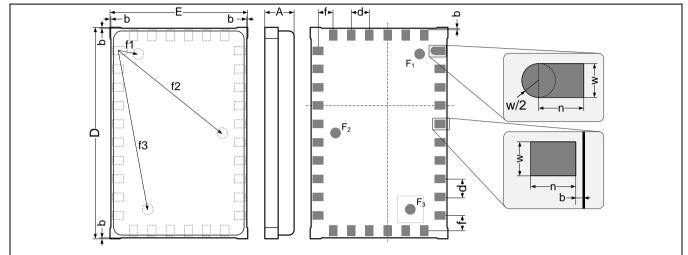



Table 5.1 ZWIR4512AC1 Physical Dimensions and Tolerances

Symbol			Symbol	Millimeters			
	Min	Тур	Мах		Min	Тур	Max
A	3.5	3.55	3.6	n		1	
D	27.74	27.94	28.14	w	1.08	1.1	1.12
E	16.31	16.51	16.71	İ1		2.67	
d		2.54		i ₂		0.27	
f	2.44	2.54	2.64	r		0.5	

Figure 5.2 ZWIR4512AC1 Recommended PCB Footprint (in millimeters)


Data Sheet	© 2013 Zentrum Mikroelektronik Dresden AG — Rev. 1.00	
April 15, 2013	All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.	20 of 25

ZWIR4512 Secure Low-Power Wireless IPv6 Module The Analog Mixed Signal Company

5.2. ZWIR4512AC2

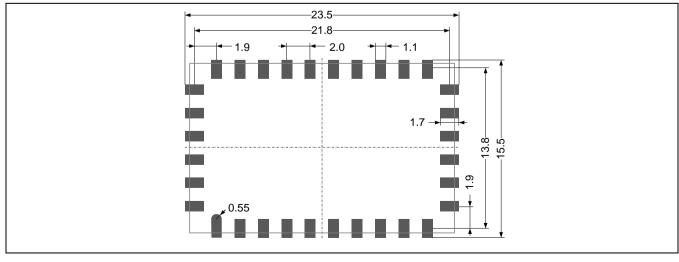
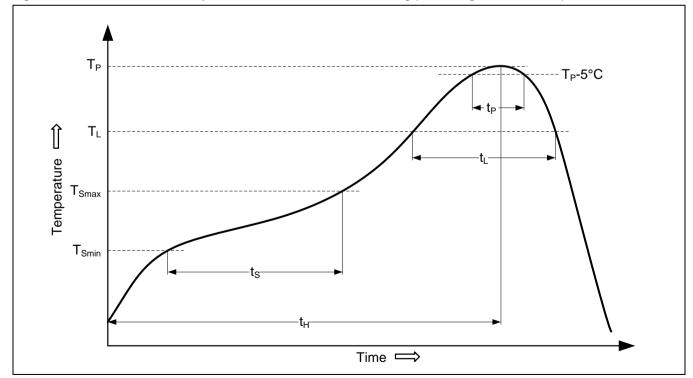

Figure 5.3 ZWIR4512AC2 Package Drawing (top, side and bottom view)

Table 5.2 ZWIR4512AC2 Physical Dimensions and Tolerances

Symbol		Millimeters	;	Symbol		Millimeters	ers		
	Min	Тур	Мах		Min	Тур	Max		
А	3.5	3.55	3.6	b	0	0.1	0.2		
D	22.9	23.1	23.3	f1 _x ¹⁾		2.0			
Е	14.9	15.1	15.3	f1 _y ¹⁾		0.5			
d		2		f2 _x ¹⁾		11.5			
f		1.75		f2 _y ¹⁾		9.0			
n		1.2		f3 _x ¹⁾		3.5			
w		0.9		f3 _y ¹⁾		17.5			

Data Sheet	© 2013 Zentrum Mikroelektronik Dresden AG — Rev. 1.00	
	All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.	21 of 25

ZWIR4512 Secure Low-Power Wireless IPv6 Module The Analog Mixed Signal Company


6 Soldering Information

To ensure that soldered connections do not break during the reflow soldering process of the application PCB, the soldering profile described in Table 6.1 and Figure 6.1 must be maintained. This profile is aligned with the profile defined in the IPC/JEDEC standard J-STD-020D.

Table 6.1	Soldering Profile Parameters (according to J-STD-020D)

Profile Feature	Symbol	Min	Max	Unit
Time 25°C to T_P	t _H		8	min
Peak package body temperature	Τ _Ρ		260	°C
Preheat / Soak				
Soak temperature	Ts	100	150	°C
Soak time	t _S	60	120	S
Ramp-up				
Ramp-up rate	T_L to T_P		3	°C/s
Time maintained above T_L	tL		150	S
Time within 5°C of T_P	t _P		30	S
Ramp-down				
Ramp-down rate	T_P to T_L		6	°C/s

Figure 6.1 Recommended Temperature Profile for Reflow Soldering (according to J-STD-020D)

1	© 2013 Zentrum Mikroelektronik Dresden AG — Rev. 1.00	00.005
/	All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.	22 of 25

7 Customization

For larger order quantities, it is possible to deliver modules with preprogrammed customer firmware. Depending on the quantity and user requirements, hardware customization to fit customer needs might be possible. Please contact our support team for requests regarding module customization.

8 Certification

8.1. European R&TTE Directive Statements

The ZWIR4512 module has been tested and found to comply with Annex IV of the R&TTE Directive 1999/5/EC and is subject of a notified body opinion. The module has been approved for Antennas with gains of 4 dBi or less.

8.2. Federal Communication Commission Certification Statements

8.2.1. Statements

This equipment has been tested and found to comply with the limits for a **Class B Digital Device**, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from where the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Modifications not expressly approved by ZMD AG could void the user's authority to operate the equipment.

The internal/external antennas used for this mobile transmitter must provide a separation distance of at least 20cm from all persons and must not be co-located or operating in conjunction with any other antenna or transmitter.

8.2.2. Requirements

The ZWIR4512 complies with Part 15 of the FCC rules and regulations. In order to retain compliance with the FCC certification requirements, the following conditions must be met:

- 1. Modules must be installed by original equipment manufacturers (OEM) only.
- 2. The module must only be operated with antennas adhering to the requirements defined in section 8.3.
- 3. The OEM must place a clearly visible text label on the outside of the end-product containing the text shown in Figure 8.1, below.

IMPORTANT: The compliance statement as shown in Figure 8.1 must be used without modifications for both ZWIR4512 product versions as the FCC ID covers the ZWIR4512AC1 and the ZWIR4512AC2!

Data Sheet	\odot 2013 Zentrum Mikroelektronik Dresden AG — Rev. 1.00	
	All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the	23 of 25
April 15, 2013	prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.	

Figure 8.1 FCC Compliance Statement to be Printed on Equipment Incorporating ZWIR4512 Devices

Contains FCC ID: COR-ZWIR4512AC1

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

8.3. Supported Antennas

The FCC compliance testing of the ZWIR4512 has been carried out using the MEXE902RPSM antenna from PCTEL Inc. This antenna has an omnidirectional radiation pattern at an antenna gain of 2 dBi. In order to be allowed to use the module without re-certification, the product incorporating the ZWIR4512 module must either use the antenna mentioned above or must use an antenna with an omnidirectional radiation pattern and a gain being less than or equal to 2 dBi.

9 Ordering Information

Product Sales Code	Description	Package
ZWIR4512AC1xA	Unprogrammed module for user application programs	30 pin SMT, 27.9 mm x 16.5 mm
ZWIR4512AC1xI	Preprogrammed module with serial command interface	30 pin SMT, 27.9 mm x 16.5 mm
ZWIR4512AC2xA	Unprogrammed module for user application programs	32 pin LGA, 23.1 mm x 15.1 mm
ZWIR4512AC2xI	Preprogrammed module with serial command interface	32 pin LGA, 23.1 mm x 15.1 mm
ZWIR4512-Devkit	Development kit	

10 Related Documents

Document	File Name
ZWIR45xx Command Interface Manual	ZWIR45xx_Cl_Manual_revX.x.pdf
ZWIR451x Programming Guide	ZWIR451x_Programming_Guide_revX.x.pdf
ZWIR45xx Over the Air Update Manual	ZWIR45xx_OTA_Update_Manual_revX.x.pdf
ZWIR45xx Application Note – Using IPSec and IKEv2 in 6LoWPANS	ZWIR45xx_App-Note_Using_IPSec_IKEv2_revX.x.pdf
STM32F103xC Data Sheet	www.st.com
STM32F103xx Reference Manual	www.st.com

Visit ZMDI's website www.zmdi.com or contact your nearest sales office for the latest version of these documents.

11 Glossary

Term	Description
6LoWPAN	IPv6 over Low Power Wireless Personal Area Networks
ADC	Analog-to-Digital Converter
API	Application Programming Interface
CI	Command Interface
DAC	Digital-to-Analog Converter
GPIO	General Purpose Input/Output
IPv6	Internet Protocol Version 6
JTAG	Joint Test Access Group
MCU	Microcontroller (STM32F103RC)
OTAU	Over-the-Air Update
PCB	Printed Circuit Board
PWM	Pulse-Width Modulation
SWD	Serial Wire Debug
TRX	Transceiver (ZWIR4502)

12 Document Revision History

Revision	Date	Description
1.00	April 15, 2013	First release of document.

Sales and Further	Information	www.zmdi.com wp		oan@zmdi.com
Zentrum Mikroelektronik Dresden AG Global Headquarters Grenzstrasse 28 01109 Dresden, Germany Central Office: Phone +49.351.8822.0 Fax +49.351.8822.600	ZMD America, Inc. 1525 McCarthy Blvd., #212 Milpitas, CA 95035-7453 USA USA Phone +855.275.9634 Phone +408.883.6310 Fax +408.883.6358	Zentrum Mikroelektronik Dresden AG, Japan Office 2nd Floor, Shinbashi Tokyu Bldg. 4-21-3, Shinbashi, Minato-ku Tokyo, 105-0004 Japan Phone +81.3.6895.7410 Fax +81.3.6895.7301	ZMD FAR EAST, Ltd. 3F, No. 51, Sec. 2, Keelung Road 11052 Taipei Taiwan Phone +886.2.2377.8189 Fax +886.2.2377.8199	Zentrum Mikroelektronik Dresden AG, Korea Office U-space 1 Building 11th Floor, Unit JA-1102 670 Sampyeong-dong Bundang-gu, Seongnam-si Gyeonggi-do, 463-400 Korea Phone +82.31.950.7679 Fax +82.504.841.3026
European Technical Support Phone +49.351.8822.7.772 Fax +49.351.8822.87.772 European Sales (Stuttgart)	DISCLAIMER: This information applies to a product under development. Its characteristics and specifications are subject to change without notice. Zentrum Mikroelektronik Dresden AG (ZMD AG) assumes no obligation regarding future manufacture unless otherwise agreed to in writing. The information furnished hereby is believed to be true and accurate. However, under no circumstances shall ZMD AG be liable to any customer, licensee, or any other third party for any special, indirect, incidental, or consequential damages of any kind or nature whatsoever arising out of or in any way related to the furnishing, performance, or use of this technical data. ZMD AG hereby expressly disclaims any liability of ZMD AG to any customer, licensee or any other third party, and any such customer, licensee and any other third party hereby waives any liability of ZMD AG for			
Phone +49.711.674517.55 Fax +49.711.674517.87955	any damages in connection with or arising out of the furnishing, performance or use of this technical data, whether based on contract, warranty, tort (including negligence), strict liability, or otherwise.			

Data Sheet	© 2013 Zentrum Mikroelektronik Dresden AG — Rev. 1.00	
1 11 15 0010	All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. The information furnished in this publication is subject to changes without notice.	25 of 25

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ZMDI:

ZWIR4512-Devkit ZWIR4512AC2WA ZWIR4512AC1WA