

Current Transducer LF 205-P

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).



EI	ectrical data						
I _{PN}	Primary nominal r.m.s	s. current		200			Α
I _P	Primary current, measuring range			0 ± 420			
R _M	Measuring resistance	asuring resistance @ $T_A = 70^{\circ}C$ $T_A = 85^{\circ}C$			2		
141			R _{M mi}	${}_{\sf n}{\sf R}_{\sf M\ max}$	R _{M min}	R _{M ma}	x
	with ± 12 V	$@ \pm 200 A_{max}$	0	71	0	69	Ω
		@ ± 420 A _{max}	0	14	0	12	Ω
	with ± 15 V	@ ± 200 A _{max}	0	100	23	98	Ω
		@ ± 420 A _{max}	0	28	23	26	Ω
\mathbf{I}_{SN}	Secondary nominal r.m.s. current			100)		m A
K _N	Conversion ratio			1:2000			
V _C	Supply voltage (± 5 %)			± 12 15			V
I _c	Current consumption @ ± 15V			17 + I _s			m A
$\dot{\mathbf{V}}_{d}$	R.m.s. voltage for AC	isolation test, 50 Hz, 1	mn	3.5	;		k۷
	ccuracy - Dynamic	performance da	ta				

Accuracy Dynamic performance data								
X _G	Overall accuracy @ I _{PN} , T _A = 25°C	± 0.5		%				
$\mathbf{e}_{\!\scriptscriptstyle \! \!\scriptscriptstyle \! \!\scriptscriptstyle \! \! \!\scriptscriptstyle \! \!\scriptscriptstyle \! \!\!\!\!\!\!\!\!\!\!\!$	Linearity	< 0.1		%				
		Тур	Max					
I_{\circ}	Offset current @ $I_p = 0$, $T_A = 25$ °C		± 0.2	mΑ				
I _{OM}	Residual current 1) @ $I_p = 0$, after an overload of 3	x I _{PN}	± 0.1	mΑ				
I_{OT}	Thermal drift of I_0 - 40°C + 85°	C ± 0.12	± 0.4	mΑ				
t _{ra}	Reaction time @ 10 % of $I_{P max}$	< 500		ns				
t _r	Response time ²⁾ @ 90 % of I _{P max}	< 1		μs				
di/dt	di/dt accurately followed	> 100		Aμs				
f	Frequency bandwidth (- 3 dB)	DC 1	00	kHz				

General data							
$\mathbf{T}_{_{\mathrm{A}}}$	Ambient operating temperature	- 40 + 85	°C				
T _s	Ambient storage temperature	- 40 + 90	°C				
Rs	Secondary coil resistance @ T _A = 70°C	33	Ω				
	@ $T_A = 85^{\circ}C$	35	Ω				
m	Mass	58	g				
	Standards 3)	EN 50178					

 $I_{PN} = 200 A$

Features

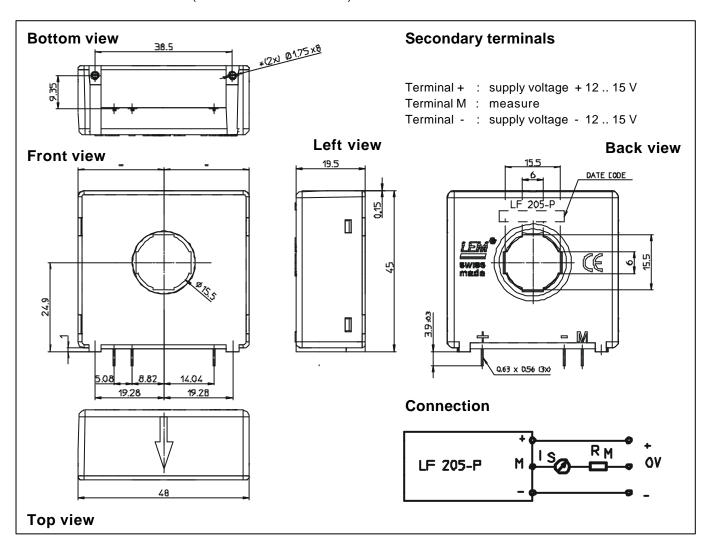
- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Advantages

- Excellent accuracy
- · Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- · Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.


Notes: 1) The result of the coercive field of the magnetic circuit

- 2) With a di/dt of 100 A/µs
- ³⁾ A list of corresponding tests is available.

011120/2

Dimensions LF 205-P (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Fastening & secondary connection Recommanded PCB hole
- Primary through-hole
- Supplementary fastening Recommended PCB hole Recommended screws LEM code
- ± 0.2 mm
- 3 pins 0.63x0.56 mm Ø 0.9 mm
- Ø 15.5 mm
- 2 holes Ø 1.75 mm
- 2.4 mm
- KA22 x 6
- 47.30.60.006.0

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.