

Current Transducer HAW 03 .. 20-P

For the electronic measurement of currents: DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Preliminary

Electrical data						
Primary nomina r.m.s. current I_{PN} (A)	Primary current measuring range $\mathbf{I}_{\mathrm{P}}(\mathrm{A})$	Primary Conductor Diameter (mm)	Туре			
3	± 7.5	0.8	HAW 03-P	1		
5	± 13	0.9	HAW 05-P	1		
10	± 25	1.1	HAW 10-P	1		
15	± 38	1.4	HAW 15-P	1		
20	± 50	1.6	HAW 20-P	1		
V _C	Supply voltage (± 5 %) Current consumption		± 15 <± 18	V mA		
I _C V _d	R.m.s. voltage for AC isola	tion test, 50/60Hz, 1 m	n 2.0	kV		
R _{IS}	Isolation resistance @ 500) VDC	> 500	$M\Omega$		
V _{OUT}	Output voltage @ $\pm I_{PN}$, $\mathbf{R}_{I} = 10 \text{ k}\Omega$, $\mathbf{T}_{\Delta} = 25 ^{\circ}\text{C}$		±4	V		
R _{OUT}	Output internal resistance	Λ.	100	Ω		
R	Load resistance		>10	$k\Omega$		

Acc	curacy-Dynamic performance data		
X	Accuracy @ I_{PN} , $T_{\Delta} = 25^{\circ}$ C (without offset)	< ± 1	% of I _{PN}
e l	Linearity (0 ± I _{PN})	< ± 1	% of I
V _E	Electrical offset voltage, $T_{\Delta} = 25^{\circ}$ C	$< \pm 40$	mV [']
V _{OE} V _{OH}	Hysteresis offset voltage $@ \mathbf{I}_p = 0$;		
OH	after an excursion of 1 x I _{PN}	$< \pm 20$	m۷
\mathbf{V}_{OT}	Thermal drift of \mathbf{V}_{OF} max.	± 1.5	mV/K
TČ e	Thermal drift of the gain (% of reading)	± 0.1	%/K
t,	Response time @ 90% of Ip	< 3	μs
f	Frequency bandwidth (- 3 dB)1)	DC 50	kHz

General data					
T _A T _S m	Ambient operating temperature Ambient storage temperature Mass	- 10 + 75 - 15 + 85 12	°C °C		

Notes: EN 50178 approval pending

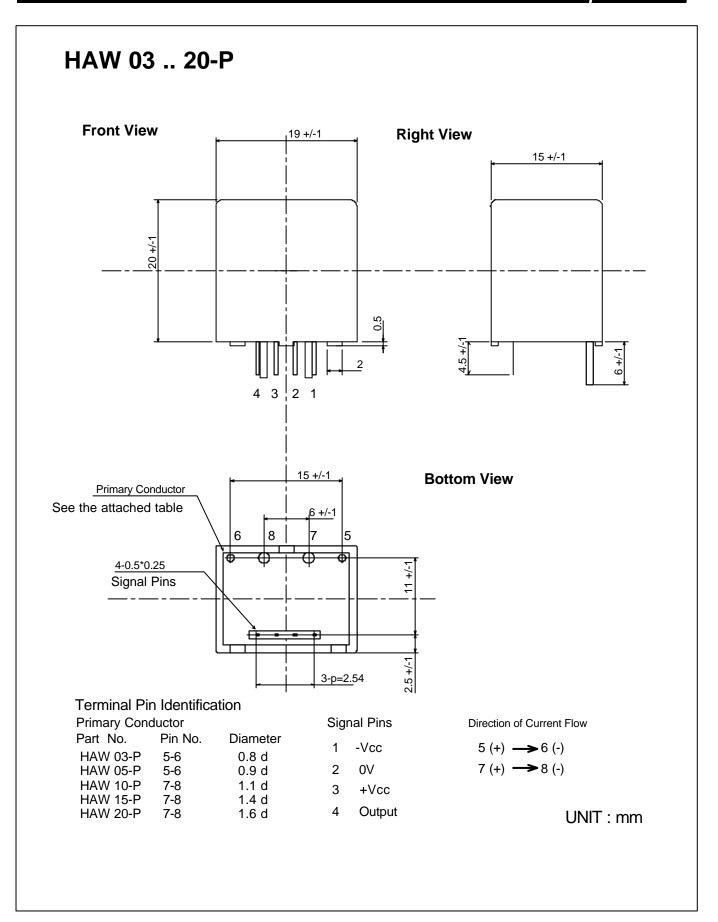
Features

- Hall effect measuring principle
- Galvanic isolation between primary and secondary circuit
- Isolation voltage 2000 V
- Low power consumption
- Extended measuring range (2.5x I_{PN})

Advantages

- Easy mounting
- Small size and space saving
- Only one design for wide current ratings range
- High immunity to external interference.

Applications


- DC motor drives
- Switched Mode Power Supplies (SMPS)
- AC variable speed drives
- Uninterruptible Power Supplies (UPS)
- · Battery supplied applications
- Inverters

010118/2

LEM Components www.lem.com

¹⁾ Derating is needed to avoid excessive core heating at high frequency.

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without previous notice.