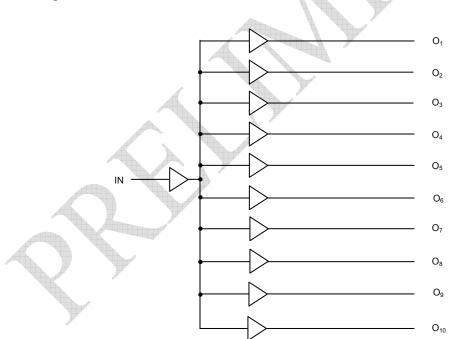
June 2005

rev 0.2

ASM2P20807A

2.5V CMOS 1-TO-10 CLOCK DRIVER

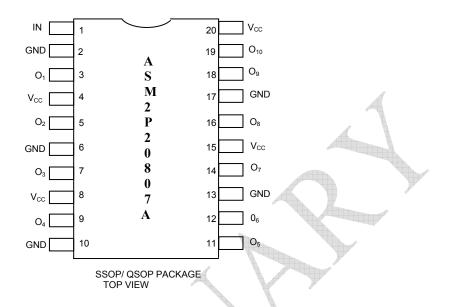
Features


- High frequency > 150MHz
- Guaranteed low skew < 150pS (max.) between any two outputs
- Very low duty cycle distortion < 300pS
- High speed: propagation delay < 3nS
- Very low CMOS power levels
- TTL compatible inputs and outputs
- 1:10 fanout
- Maximum output rise and fall time < 1.25nS (max.)
- Low input capacitance: 3pF (typ)
- 2.5V Supply Voltage
- Available in SSOP and QSOP Packages

Block Diagram

The ASM2P20807A is a 2.5V compatible, high speed, low noise, 1:10 fanout, non-inverting clock buffer. The large fanout from a single input reduces loading on the preceding driver and provides an efficient clock distribution network.

Providing output to output skew as low as 150pS, the ASM20807A is an ideal clock distribution device for synchronous systems. Multiple power and grounds reduce noise. Typical applications are clock and signal distribution.



Alliance Semiconductor

2575, Augustine Drive • Santa Clara, CA • Tel: 408.855.4900 • Fax: 408.855.4999 • www.alsc.com

June 2005

rev 0.2 **Pin Configuration**

Pin Description

Pin #	Pin Names	Description			
1	IN	Clock Input			
3,5,7,9,11,12,14,16,18,19	O ₁ -O ₁₀	Clock Outputs			
2,6,10,13,17	GND	Ground			
4,8,15,20	Vcc	Power supply			

Capacitance (TA = +25°C, f = 1.0MHz)

Symbol	Parameter ¹	Conditions	Тур	Мах	Unit		
CIN	Input Capacitance	V _{IN} = 0V	3	4	pF		
NOTE: 1 This parameters is measured at share-tarization but not tooted							

NOTE:1. This parameter is measured at characterization but not tested.

Absolute Maximum Ratings¹

Symbol	Description	Max	Unit
V _{TERM} ²	Terminal Voltage with Respect to GND	-0.5 to +4.6	V
V _{TERM} ³	Terminal Voltage with Respect to GND	-0.5 to +5.5	V
V _{TERM} ⁴	Terminal Voltage with Respect to GND	-0.5 to V _{CC} +0.5	V
TSTG	Storage Temperature	-65 to +150	°C
IOUT	DC Output Current	-60 to +60	mA

NOTES:

1. These are stress ratings only and are not implied for functional use. Exposure to absolute maximum ratings for prolonged periods of time may affect device reliability.

V_{CC} terminals.
Input terminals.

4. Outputs and I/O terminals.

Power Supply Characteristics

Symbol	Parameter	Test Condition	ons ¹	Min	Typ ²	Max	Unit
I _{CCL} I _{CCH}	Quiescent Power Supply Current TTL Inputs HIGH	V _{CC} = Max V _{IN} = GND or V _{CC}		-	0.1	20	μA
Δl _{CC}	Power Supply Current per Input HIGH	V _{CC} = Max V _{IN} = V _{CC} -0.6V		-	45	300	μA
Ісср	Dynamic Power Supply Current per Output ³	V _{CC} = 2.7V and 15 pF load 150 MHz			40	-	µA ∕/MHz
Ι _C	Total Power Supply Current ⁴	V _{CC} = Max. C _L = 12pF	V _{IN} = V _{CC} V _{IN} = GND	-	65	90	
NOTED		All outputs toggling fi = 150MHz	V _{IN} = V _{CC} –0.6V V _{IN} = GND	A	75	100	mA

NOTES:

1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.

1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characte 2. Typical values are at $V_{CC} = 2.5V$, $+25^{\circ}C$ ambient. 3. This parameter is not directly testable, but is derived for use in Total Power Supply calculations. 4. $I_{C} = IQUIESCENT + IINPUTS + IDYNAMIC$ $I_{C} = I_{CC} + \Delta I_{CC} DHNT + I_{CCD} (fi)$ $I_{CC} = Quiescent Current (I_{CCL}, I_{CCH} and I_{CCZ})$ $\Delta I_{CC} = Power Supply Current for a TTL High Input (V_{IN} = V_{CC} - 0.6V)$ $D_{H} = Duty Cycle for TTL Inputs High$ $N_{T} = Number of TTL Inputs at DH$ $I_{CCD} = Dynamic Current Caused by an Input Transition Pair (HLH or LHL)$ fi = Input Frequency

DC Electrical Characteristics Over Operating Range

Following Conditions Apply Unless Otherwise Specified Industrial: T_A = -40°C to +85°C, V_{CC} = 2.5V ± 0.2V

Symbol	Parameter	Test Conditions ¹	Min	Typ ²	Мах	Unit
VIH	Input HIGH Level		1.7	-		V
V _{IL}	Input LOW Level		-	- /	0.7	V
Іін	Input HIGH Current (Input pins)	V _{CC} = Max, V _I = V _{CC}	-		±1	mA
IIL	Input LOW Current (Input pins)	V _{CC} = Max, V _I = GND	-	-	±1	mA
VIK	Clamp Diode Voltage	V _{CC} = Min, I _{IN} = -18mA	-	-0.7	-1	V
I _{ODH}	Output HIGH Current	V_{CC} = 2.5V, V_{IN} = V_{IH} or V_{IL} V_{O} = 1.25V ³	-25	-45	-100	mA
I _{ODL}	Output LOW Current	V_{CC} = 2.5V, V_{IN} = V_{IH} or V_{IL} V_{O} = 1.25V ³	20	55	120	mA
V _{OH}	Output HIGH Voltage	V_{CC} = Min V_{IN} = V_{IH} or V_{IL} I_{OH} = -1mA	V _{cc} -0.2	-	-	V
V OH		I _{ОН} = -8mА	1.8 ⁵	-	-	v
V _{OL}	Output LOW Voltage	V _{CC} = Min I _{OL} = 1mA	-	-	0.4	V
		V _{IN} = V _{IH} or V _{IL} I _{OL} = 8mA	-	-	0.6	v
l _{os}	Short Circuit Current ⁴	V_{CC} = Max., V_O = GND ³	-25	-60	-135	mA

NOTES:

For conditions shown as Max or Min, use appropriate value specified under Electrical Characteristics for the applicable device type.
Typical values are at Vcc = 2.5V, +25°C ambient.
Not more than one output should be shorted at one time. Duration of the test should not exceed one second.

4. This parameter is guaranteed but not tested. 5. V_{OH} = Vcc - 0.6V at rated current.

Switching Characteristics Over Operating Range^{1,2} Following Conditions Apply Unless Otherwise Specified Industrial: $T_A = -40^{\circ}C$ to +85°C, $V_{CC} = 2.5V \pm 0.2V$

Symbol	Parameter	Conditions ³	Min	Тур	Max	Unit
t _{PLH}	Propagation Delay	C _L = 22pF		2	2 5	
t _{PHL}		100 MHz	-	3	3.5	nS
t _R	Output Rise Time		-	1	1.25	nS
t _F	Output Fall Time		-	1	1.25	nS
t _{SK(O)}	Same Device Output Pin-to-Pin Skew ⁴		-	100	150	pS
t _{SK(P)}	Pulse Skew ⁵			250	300	pS
t _{SK(PP)}	Part-to-Part Skew ⁶		-	400	600	pS
	•	1				1

			VI	in H		
Symbol	Parameter	Conditions ^{3,7}	Min	Тур	Max	Unit
t _{PLH}	Propagation Delay	C _L = 12pF		2.4	2.7	nS
t _{PHL}		150 MHz		2.4	2.1	115
t _R	Output Rise Time		-	1	1.2	nS
t⊧	Output Fall Time		-	1	1.2	nS
t _{SK(O)}	Same Device Output Pin-to-Pin Skew ⁴		-	100	150	pS
t _{SK(P)}	Pulse Skew ⁵		-	250	300	pS
t _{SK(PP)}	Part-to-Part Skew ⁶		-	400	600	pS

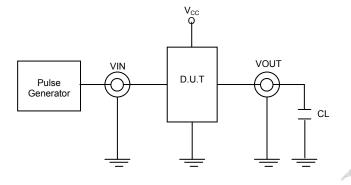
NOTES:

1. t_{PLH} and t_{PHL} are production tested. All other parameters guaranteed but not production tested.

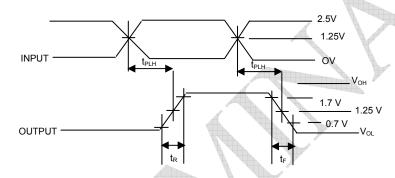
2. Propagation delay range indicated by Min. and Max. limit is due to VCC, operating temperature and process parameters. These propagation delay limits do not imply skew.

3. See test circuits and waveforms.

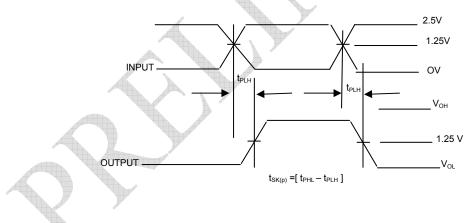
4. Skew measured between all outputs under identical transitions and load conditions.

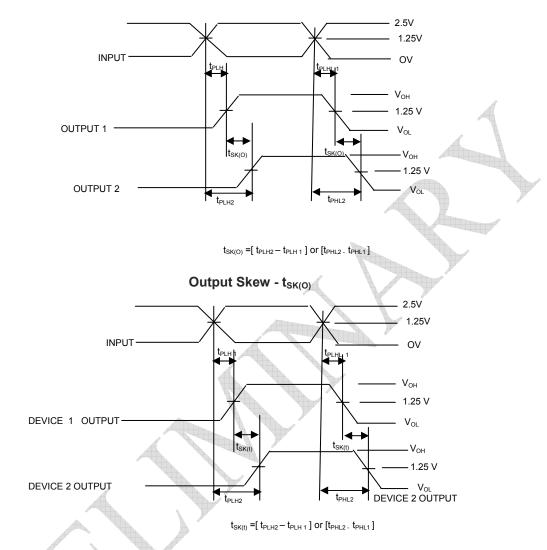

Skew measured is difference between propagation delay times t_{PHL} and t_{PLH} of same output under identical load conditions.
Part to part skew for all outputs given identical transitions and load conditions at identical VCC levels and temperature.

7. Airflow of 1m/s is recommended for frequencies above 133MHz.


June 2005

rev 0.2


Test Circuits and Waveforms


CL = Load Capacitance: Includes Jig and Capacitance probe

Propagation Delay

Pulse Skew - t_{SK(P)}

Part-to-Part Skew - t_{SK(PP)} NOTE: Device 1 and device 2 are same package type and speed grade.

Test Conditions

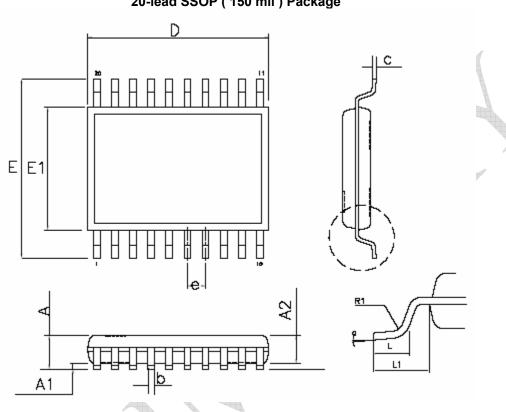
Symbol	Symbol VCC = 2.5V ±0.2V			
CL	221	pF		
	12 ²			
RT	Z OUT of pulse generator	Ω		
t _R / t _F	1.25 ¹	nS		
	1.2 ²			

DEFINITIONS:

C_L = Load capacitance: includes jig and probe capacitance.

 R_T = Termination resistance: should be equal to ZOUT of the Pulse Generator.

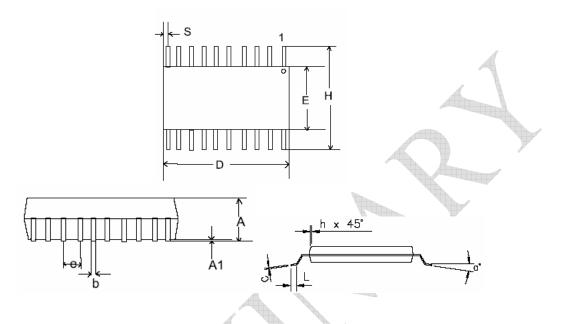
 t_R / t_F = Rise/Fall time of the input stimulus from the Pulse Generator.


NOTES:

1. Test conditions at 100MHz.

2. Test conditions at 150MHz.

rev 0.2 Package Information



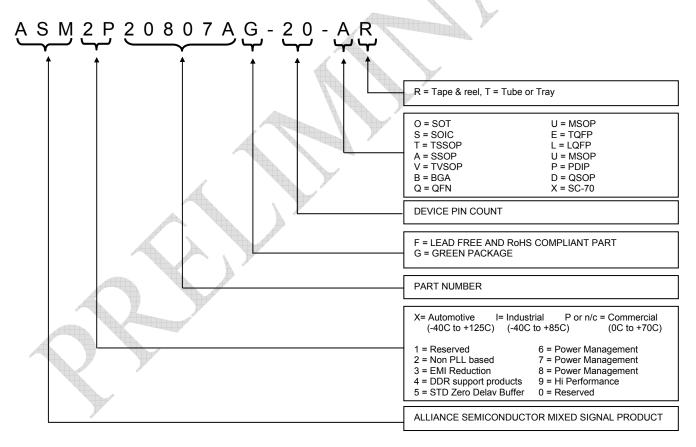
		Dimen	sions	
Symbol	Inch	es	Millim	eters
	Min	Max	Min	Max
A	0.053	0.069	1.346	1.753
A1	0.004	0.010	0.102	0.254
A2		0.059		1.499
D	0.337	0.344	8.560	8.738
с	0.007	0.012	0.178	0.274
E	0.228	0.244	5.791	6.198
E1	0.150	0.157	3.810	3.988
L	0.016	0.035	0.406	0.890
L1	0.010 BASIC		0.254 I	BASIC
b	0.203	0.325	0.008	0.014
R1	0.003		0.08	
а	0°	8°	0°	8°
е	0.025 E	BASIC	0.635 I	BASIC

20-lead SSOP (150 mil) Package

20-lead QSOP Package

		Dimensions					
	Symbol	Inch	es	Millim	eters		
		Min	Max	Min	Max		
	А	0.060	0.068	1.52	1.73		
A STATE	A1	0.004	0.008	0.10	0.20		
	b	0.009	0.012	0.23	0.30		
\mathcal{A}	с	0.007	0.010	0.18	0.25		
	D	0.337	0.344	8.56	8.74		
	E	0.150	0.157	3.81	3.99		
	е	0.025	BSC	0.64	BSC		
	Н	0.230	0.244	5.84	6.20		
<i>,</i>	h	0.010	0.016	0.25	0.41		
	L	0.016	0.035	0.41	0.89		
	S	0.056	0.060	1.42	1.52		
	а	0°	8°	0°	8°		

2.5V CMOS 1-TO-10 CLOCK DRIVER


Notice: The information in this document is subject to change without notice.

Ordering Information

Part Number	Marking	Package Type	Temperature
ASM2P20807A-20-AR	2P20807A	20-Pin SSOP, TAPE & REEL	Commercial
ASM2P20807A-20-AT	2P20807A	20-Pin SSOP, TUBE	Commercial
ASM2P20807A-20-DR	2P20807A	20-Pin QSOP, TAPE & REEL	Commercial
ASM2P20807A-20-DT	2P20807A	20-Pin QSOP, TUBE	Commercial
ASM2I20807AG-20-AR	2I20807AG	20-Pin SSOP, TAPE & REEL, Green	Industrial
ASM2I20807AG-20-AT	2I20807AG	20-Pin SSOP, TUBE, Green	Industrial
ASM2I20807AG-20-DR	2I20807AG	20-Pin QSOP, TAPE & REEL, Green	Industrial
ASM2I20807AG-20-DT	2I20807AG	20-Pin QSOP, TUBE, Green	Industrial

Device Ordering Information

Licensed under US patent Nos 5,488,627 and 5,631,920.

Alliance Semiconductor Corporation 2595, Augustine Drive, Santa Clara, CA 95054 Tel# 408-855-4900 Fax: 408-855-4999 www.alsc.com Copyright © Alliance Semiconductor All Rights Reserved Advance Information Part Number: ASM2P20807A Document Version: v0.2

Note: This product utilizes US Patent # 6,646,463 Impedance Emulator Patent issued to Alliance Semiconductor, dated 11-11-2003

© Copyright 2003 Alliance Semiconductor Corporation. All rights reserved. Our three-point logo, our name and Intelliwatt are trademarks or registered trademarks of Alliance. All other brand and product names may be the trademarks of their respective companies. Alliance reserves the right to make changes to this document and its products at any time without notice. Alliance assumes no responsibility for any errors that may appear in this document. The data contained herein represents Alliance's best data and/or estimates at the time of issuance. Alliance reserves the right to change or correct this data at any time, without notice. If the product described herein is under development, significant changes to these specifications are possible. The information in this product data sheet is intended to be general descriptive information for potential customers and users, and is not intended to operate as, or provide, any guarantee or warrantee to any user or customer. Alliance does not assume any responsibility or liability arising out of the application or use of any product described herein, and disclaims any express or implied warranties related to the sale and/or use of Alliance products including liability or warranties related to fitness for a particular purpose, merchantability, or infringement of any intellectual property rights, except as express agreed to in Alliance's Terms and Conditions of Sale which are available from Alliance. All sales of Alliance products are made exclusively according to Alliance's Terms and Conditions of Sale. The purchase of products from Alliance does not convey a license under any patent rights, copyrights; mask works rights, trademarks, or any other intellectual property rights of Alliance or third parties. Alliance does not authorize its products for use as critical components in life-supporting systems where a malfunction or failure may reasonably be expected to result in significant injury to the user, and the inclusion of Alliance products in such life-supporting systems implies that the manufacturer assumes all risk of such use and agrees to indemnify Alliance against all claims arising from such use.