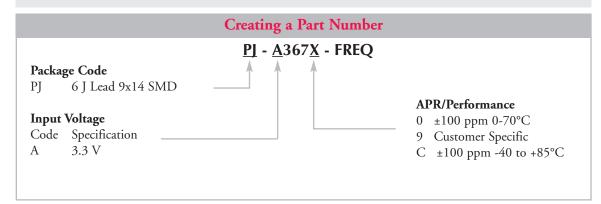
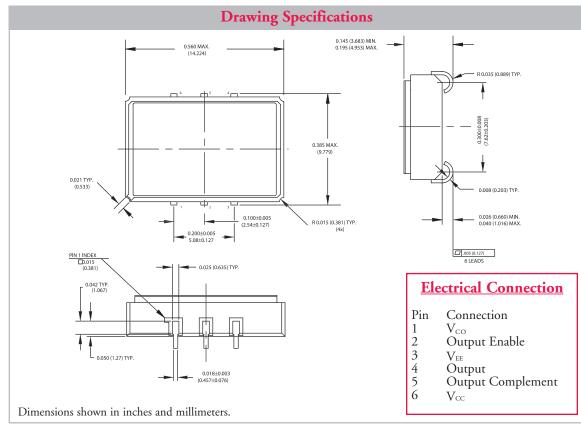
PJ-A3670 Series

Size, mm 9 x 14 I/O 6 J Lead Supply Voltage 3.3V

VCXO Series (PECL) PJ-A3670 Series Rev J

Frequency Range: 70.0 MHz to 200.0 MHz


Description


The PJ-A3670 Series of voltage controlled quartz crystal oscillators provide frequency control by applying a voltage to Pin 1. This unit supplies ECLiPS compatible outputs which are enabled when Pin 2 is set to a logic low or left open.

Features

- High Reliability NEL HALT/HASS qualified for crystal oscillator start-up conditions
- Low jitter Wavecrest jitter characterization available
- Frequency range—70.0 MHz to 200.0 MHz
- Will withstand vapor phase temperatures of 253°C for 4 minutes maximum
- Space-saving alternative to discrete component oscillators
- Wide Absolute Pull Range

- High shock resistance, to 3000g
- 3.3 Volt operation
- Metal lid electrically connected to ground to reduce EMI
- High Q crystal actively tuned oscillator circuit
- Power supply decoupling internal
- No internal PLL avoids cascading PLL problems
- High frequencies due to proprietary design
- Gold plated leads—Solder dipped leads available upon request
- RoHS Compliant, Lead Free Construction (unless solder dipped leads are supplied)

For the most up to date specifications on each NEL product, log on to our website—www.nelfc.com

VCXO Series (PECL) PJ-A3670 Series Rev J

Frequency Range: 70.0 MHz to 200.0 MHz

Operating Conditions and Output Characteristics

210011011 01111110110								
Parameter	Symbol	Conditions	Min	Typical	Max			
Frequency	<u> </u>		70.0 MHz		200.0 MHz			
Duty Cycle		$@V_{\circ}/2$	45/55%		55/45%			
Logic 0	V_{ol}		$V_{\scriptscriptstyle CC}$ -1.810 $V_{\scriptscriptstyle DC}$		$V_{\rm CC}$ -1.620 $V_{\rm DC}$			
Logic 1	$ m V_{OH}$		$V_{\scriptscriptstyle CC}$ -1.200 $V_{\scriptscriptstyle DC}$		V_{CC} -0.880 V_{DC}			
D' 0- F 11 T'		20.000/ 17			(00			

600 ps $20\text{-}80\%\ V_{\scriptscriptstyle O}$ Rise & Fall Time t_r, t_f Jitter, RMS⁽¹⁾ 3 psec ±100 ppm Absolute Pull Range APR V_{CO} =0.3 to 3.0 VV_{co} Input Impedance 50 na dc current max 100K ohm V_{CO} Linearity $V_{\text{\tiny CO}}\text{=}0.3$ to 3.0~V10% Transfer Function (2) $V_{CO} = 0.3$ to 3.0 V Positive

General Characteristics

Electrical Characteristics

Parameter	Symbol	Conditions	Min	Typical 3.3 V	Max
Supply Voltage	$ m V_{CC}$ - $ m V_{EE}$	Nominal	3.135 V	3.3 V	3.465 V
Supply Current	I_{cc}				60 mA
Output Current	I_{o}		0.0 mA		±50.0 mA
Operating Temperature	$T_{\scriptscriptstyle m A}$	_	0°C		70°C
Storage Temperature	T_s		-55°C		125°C
Power Dissipation	${ m P}_{ m D}$				208 mW
Lead Temperature	$T_{\scriptscriptstyle m L}$	Soldering, 10 sec.	_		300°C
Load	50 ohm to Vcc -2 V	or Thevenin Equivalent, Bias Required			

Environmental and Mechanical Characteristics

Per MIL-STD-202, Method 213, Condition E Mechanical Shock Thermal Shock Per MIL-STD-833, Method 1011, Condition A

0.060" double amplitude $10~\mathrm{Hz}$ to $55~\mathrm{Hz},\,35\mathrm{g's}$ $55~\mathrm{Hz}$ to $2000~\mathrm{Hz}$ $300^{\circ}\mathrm{C}$ for $10~\mathrm{seconds}$ Vibration

Soldering Condition

Leak rate less than 1 x 10⁻⁸ atm.cc/sec of helium Hermetic Seal

Footnotes:

1) Jitter performance is frequency dependent. Please contact factory for full Wavecrest characterization. RMS jitter bandwidth of 12kHz to 20MHz.

2) Frequency increase with increase in control voltage and is monotonic.