

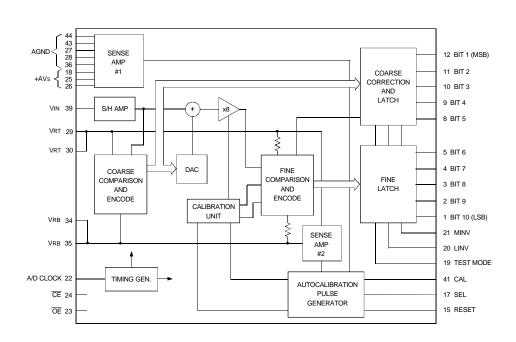
FEATURES

- 10-bit, 20MHz sampling
- ±1LSB max. differential nonlinearity
- Internal calibration circuit
- Internal S/H amplifier
- 70MHz input bandwidth
- TTL/CMOS compatible in-out logic
- Latched three-state output data
- Single +5V supply
- Low 150mW power dissipation
- Small 48 pin LQFP package
- Low cost

GENERAL DESCRIPTION

DATEL'S ADS-325A is a low power, 10-bit, 20MHz, CMOS sampling A/D converter. Its small 48 pin plastic LQFP package contains a S/H amplifier, a 3-state output register, linearity calibration circuitry, and all necessary control logic. Only two external reference voltages, an A/D clock and a few digital inputs are required. The A/D clock may be applied with 50% duty cycle.

The excellent dynamic performance includes a spurious free dynamic range of 65dB and a signal-to-noise ratio with distortion of 54dB with a 3MHz input. ADS-325A is capable of operating from a single +5V power supply and typically consumes only 150mW. It can also operate from a +5V analog Vs with +3.3V digital Vs enabling an interface with 3.3V logic circuitry. The ADS-325A is ideally suited for high quality video/ CCD imaging applications.


Sampling A/D Converter

ADS-325A

10-Bit, 20MHz

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	BIT 10 (LSB)	48	DIGITAL GROUND (DGND)
2	BIT 9	47	NO CONNECTION
3	BIT 8	46	NO CONNECTION
4	BIT 7	45	+DV _S (Digital)
5	BIT 6	44	ANALOG GROUND (AGND)
6	DIGITAL GROUND (DGND)	43	ANALOG GROUND (AGND)
7	+DV _S (Digital)	42	TEST SIGNAL IN
8	BIT 5	41	CALIBRATION (CAL)
9	BIT 4	40	NO CONNECTION
10	BIT 3	39	ANALOG INPUT (VIN)
11	BIT 2	38	TEST SIGNAL OUT
12	BIT 1 (MSB)	37	TEST SIGNAL IN
13	TEST PIN	36	ANALOG GROUND (AGND)
14	TEST SIGNAL IN	35	REFERENCE BOTTOM (VRB)
15	RESET	34	REFERENCE BOTTOM (VRB)
16	DIGITAL GROUND (DGND)	33	NO CONNECTION
17	SELECT (SEL)	32	NO CONNECTION
18	+AVS (Analog)	31	NO CONNECTION
19	TEST MODE	30	REFERENCE TOP (VRT)
20	LINV	29	REFERENCE TOP (VRT)
21	MINV	28	ANALOG GROUND (AGND)
22	A/D CLOCK	27	ANALOG GROUND (AGND)
23	OUTPUT ENABLE (OE)	26	+AVS (Analog)
24	CHIP ENABLE (CE)	25	+AVS (Analog)

Figure 1. ADS-325A Functional Block Diagram

B LA

ABSOLUTE MAXIMUM RATINGS (TA = +25°C)

PARAMETERS	LIMITS	UNITS	
Supply Voltages (+AV _S and +DV _S)	0 to +7	Volts	
Reference Voltage (VRT and VRB)	-0.5 to +AV _S +0.5	Volts	
Input Voltage, Analog (V _{IN})	-0.5 to +AV _S +0.5	Volts	
Input Voltage, Digital (V _{IH} and V _{IL})	-0.5 to +AV _S +0.5	Volts	
Output Voltage, Digital (VOH and VOL)	-0.5 to +DVs +0.5	Volts	

FUNCTIONAL SPECIFICATIONS

(Typical at $f_S = 20MHz$, +AV_S = +5V, +DV_S = +3.3V, V_{RB} = +2.0V, V_{RT} = +4.0V, and T_A = +25°C unless otherwise specified.)

ANALOG INPUTS	MIN.	TYP.	MAX.	UNITS
Input Voltage Range, VIN		+2 to +4		Volts
Input Current				
$V_{IN} = +4V$	_	40	50	μA
$V_{IN} = +2V$	-50	-40	-	μA
Capacitance, CIN	—	9	-	pF
Bandwidth (-1dB)	-	70	_	MHz
REFERENCE				
Reference Input Voltage				
VRT	_	+4	+4.6	Volts
VRB	+1.8	+2	—	Volts
Input Current	-	-	11	
IRT	5	7	11	mA
IRB	-11	-7	-5	mA
Offset Voltage	40	.00	140	
VRT	+40	+90	+140	mV
	-120	-70	-20	mV
Resistance (VRT – VRB)	180	280	380	Ω
DIGITAL INPUTS	1	I	I	1
Input Voltage Viн, Logic "1"	. 2. 2			Volts
	+2.3	_	+0.8	
VIL, Logic "0"	_	_	+0.8	Volts
Input Current			-	
Iн, Logic Loading "1" ① IIL, Logic Loading "0" ②	_	_	5 5	μΑ
, 3 5	_	_	5	μA
A/D Clock Pulse Width TPW1	25			nc
Трио	25	_	_	ns ns
DIGITAL OUTPUTS				
Output Logic Current				
Юн, Logic "1" 3	-3.5	_	_	mA
Iol, Logic "0" ④	3.5	-	_	mA
Leak Current at OE = "1" 5	—	-	1	μΑ
3-State Enable Time, TPZE 6	10	15	20	ns
3-State Disable Time, TPEZ 🕐	20	25	30	ns
Data Delay, TDL (CL = 20pF)	8	13	18	ns
PERFORMANCE				
Resolution	10	—	—	Bits
Max. Throughput Rate ®	20	-	_	MHz
Min. Throughput Rate ®	-	_	0.5	MHz
Integral Linearity Error	-	±1.3	±2	LSB
Differential Linearity Error	-	±0.5	±1	LSB
Differential Gain Error (9	-	1.0	-	%
Differential Phase Error (9)	_	0.3	_	Degrees
Aperture Delay, Tsd	2	4	6	ns
SNR & Distortion		50		.15
fin = 100kHz	-	53	-	dB
6 500111	I —	52	-	dB
$f_{IN} = 500 kHz$				
fin = 1MHz	_	53	_	dB
fin = 1MHz fin = 3MHz	_ _	54	_	dB
fin = 1MHz				

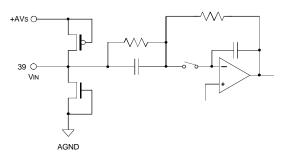
PERFORMANCE (CONT.)	MIN.	TYP.	MAX.	UNITS
Spurious Free Dynamic Range				
fin = 100kHz	_	60	_	dB
fin = 500kHz	—	59	_	dB
fin = 1MHz	—	60	_	dB
fin = 3MHz	—	65	_	dB
fin = 7MHz	—	50	_	dB
fin = 10MHz	-	49	-	dB
POWER REQUIREMENTS				
Power Supply Voltage				
+AVs	+4.75	+5.0	+5.25	Volts
+DVs	+3.0	_	+5.25	Volts
DGND – AGND	_	_	100	mV
Supply Current				
Analog, +Als	20	27	34	mA
Digital, +DIs	_	3	5	mA
Standby Current (CE = "1")				
Analog, +Als	_	_	1	mA
Digital, +DIs	—	_	1	μA
Power Dissipation	—	150	—	тW
PHYSICAL/ENVIRONMENT	AL.			
Operating Temperature Range	-20	_	+75	°C
Storage Temperature Range	-55	-	+150	°C
Weight	0.2 grams			
Package		48-pin pla		

Footnotes:

- ① +DV_S = Max., V_{IH} = +DV_S
- (2) $+DVs = Max., V_{IL} = 0V$ (3) $\overline{OE} = AGND, +DVs = Min.,$
- (5) \overline{OE} = +AVs, +DVs = Max., VOH = +DVs, and VOL = 0V
- 6 Hi-Z to Active, asynchronous with clock.
- ⑦ Active to Hi-Z, asynchronous with clock.
- VOH = +DVs-0.5V OE = AGND, +DVs = Min.,VOL = 0.4V
- 8 Fin = 1kHz
 9 NTSC 401RE mod. ramp, fc = 14.3MHz

TECHNICAL NOTES

- 1. **Caution to ESD:** Since the ADS-325A is a CMOS device, precautions against static electricity should be taken.
- 2. +AVs and +DVs: While the unit has separate pins for both the analog supply (+AVs) and the digital supply (+DVs), a time skew between supplying (or removing) both +AVs and +DVs may cause a latch-up problem. DATEL recommends using a common power supply for both +AVs and +DVs to avoid latch-up conditions. It is possible to use +3.3V for +DVs along with +5V for +AVs. Compared to the singe +5V supply application, there will be no significant difference in performance. However, special care should be taken to minimize the time skew between +AVs and +DVs when turning on/off.
- 3. PC board layout: To obtain fully specified performance careful attention to PC board layout is required. Place large ground planes on the board and connect both analog and digital grounds at one point right beneath the converter. In the case where the grounds are tied at a location distant from the converter, the voltage difference between the grounds must be within 100mV. Tie all ground pins directly to the appropriate ground plane beneath the converter. Bypass +AVs and +DVs pins to ground using 10μF tantalum capacitors in parallel with 0.1μF ceramic capacitors at locations as close to the unit as possible.
- Reference Input: Two external voltage references are required for the two reference inputs VRT (pin 29, 30) and VRB (pin 34, 35). Typically, these are +4V for VRT and +2V


for VRB, which give an analog input range of +2V to +4V. The reference voltages must be within the following limitations:

+AVS – 0.4V > = VRT > VRB >= +1.8V, and VRT – VRB > = 1.8V

Stability of the reference will directly affect the accuracy of the A/D conversion. In this sense, the reference sources must be capable of driving more than 10mA. Also, the VRT and VRB pins should be bypassed to analog ground with 0.1 μ F ceramic capacitors placed as close to the pins as possible.

- 5. **Analog Input:** ADS-325A has a broad input bandwidth of 70MHz (@-1dB) with only 9pF of input capacitance at its analog input. The analog input should be driven by a high speed buffer amplifier with sufficient current drive.
- Digital Inputs: All digital input pins including A/D clock input are CMOS compatible. Each of these pins has an internal overvoltage protection circuit with diodes as shown in Figure 2 (Equivalent circuit diagrams).
- 7. **Control Logic Inputs:** ADS-325A has several control logic input pins. Functions of these pins are described in the following:

TEST MODE (pin 19), MINV (pin 21), LINV (pin 20) These three pins select the output data format. With a combination of these input states the output data takes any form of binary, complementary binary, 2's compliment, or certain test pattern. Refer to Table 1 (Output coding) and Table 2 (Truth table).

Analog Signal Input

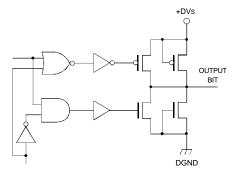
CE (Chip Enable, pin 24)

For normal operation the input to this pin should be logic low. Input high applied to the pin puts the unit into standby mode. In standby mode the unit dissipates only a few milliwatts or less.

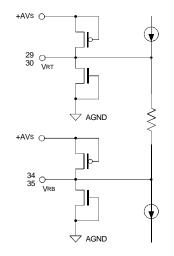
OE (Output Enable, pin 23)

Input logic low applied to this pin enables the three-state output bits (Bit 1 to Bit 10). Input high disables the outputs.

RESET (pin 15)


This pin can be used to re-initiate start-up calibration. Normally connect this pin to logic high. See Calibration Function for more details.

CAL (Calibration Input, pin 41) This pin is the input for an external calibration pulse. See Calibration Function for more details.


SEL (Select, pin 17)

Applying logic high to this pin allows use of the internal auto calibration function and blocks out the external pulse from the CAL input. Inputting logic low to the pin disables the internal cal function and allows usage of the external cal pulses.

- Test IN/OUT pins: Test signal input/output pins are used in the production process. The test signal output pins (pin 13, 38) should normally be left open. Tie the test signal input pin 42 to +AVs and the pins 14 and 37 to +AVs or AGND.
- Three-state output buffer: A/D output buffer (BIT 1 to BIT 10) is a three-state register controlled by the OE pin. The output logic high level is dependent on +DVs.

Digital Data Outputs

Reference Input

CALIBRATION FUNCTION

To achieve its superior linearity ADS-325A has an internal calibration circuit with a built-in calibration pulse generation circuit and an input pin for an external calibration pulse. The calibration circuit consists of three D/A converters, a pattern generator and an averaging circuit. With either internal or external calibration pulses applied to the calibration circuit, the circuit senses an offset of the x8 gain amplifier and two reference biases supplied from the VRT and the VRB to a fine comparator/encoder block, and compensates them using the three DACs.

With a single negative going calibration pulse a unit cycle of calibration is completed. It is initiated with the negative going edge of the calibration pulse and takes seven A/D clock periods to be completed. Due to the fact that this calibration cycle occupies the lower comparator for four A/D clock periods the lower five bits of the output data remain constant through 4 clock cycles after the completion of the cycle. Figure 3 shows the timing for the calibration cycle.

A sequence of seven unit calibration cycles initiated by seven calibration pulses, completes a single calibration process. The number of calibration processes required depends on the condition of the device and on the stability of the references and the power. Even in worst case, 80 calibration processes done by 560 calibration pulses are enough to finish the whole calibration.

There are three modes of the calibration function. These are:

- a. Start-up calibration function
- b. Internal auto-calibration function
- c. External calibration function

	Tabl	e 1.	Digita	al Output	Coding
TEST MODE	_ 1		v = 0	MINN/	0

1EST MODE = 1, LINV = 0, MINV = 0						
Analog Input Voltage	Step	Digi MSB	tal Outpu	t Code LSB		
3.998V	1023	11	1111	1111		
3.996V	1022	11	1111	1110		
:	:		:			
3.000V	512	10	0000	0000		
2.998V	511	01	1111	1111		
:	:		:			
2.002V	1	00	0000	0001		
2.000V	0	00	0000	0000		

For operation in modes a. and b. the ADS-325A has a built-in calibration pulse generation circuit. Figure 4a. illustrates a simplified block diagram of this circuit.

Start-up Calibration Function

At power-up of the unit the initial calibration process requires over 600 calibration pulses. The internal start-up calibration function automatically generates these pulses when power is first applied to the ADS-325A. To initiate the start-up calibration, the following five conditions must be met. See Figure 4b.

- 1. The supply voltage +AVs must be at least 2.5 Volts higher than AGND.
- 2. The voltage difference between VRT and VRB must be at least 1 Volt.
- 3. The RESET pin (pin 15) must be set high.
- 4. The CE pin (pin 24) must be set low.
- 5. Condition 1 must be met before condition 2.

Once all of the above conditions have been met, the calibration pulses are generated by counting 16 A/D clock cycles on a 14-bit counter until closing the gate when the carry-out occurs. The time required for the start-up calibration is determined by the following formula:

Start-up Calibration Time = 1/fcLK x 16 x 16,384

P - Positive True: N - Negative True (inverted)

where fclk is the frequency of the A/D clock input. For example, a clock frequency of 14.3MHz requires a calibration time of 18.3ms.

TEST MODE	LINV	MINV	D MSB	igital Out	put LSB
1	0	0	PP	PPPP	PPPP
1	1	0	PN	NNNN	NNNN
1	0	1	NP	PPPP	PPPP
1	1	1	NN	NNNN	NNNN
0	1	1	10	1010	1010
0	0	1	11	0101	0101
0	1	0	00	1010	1010
0	0	0	01	0101	0101

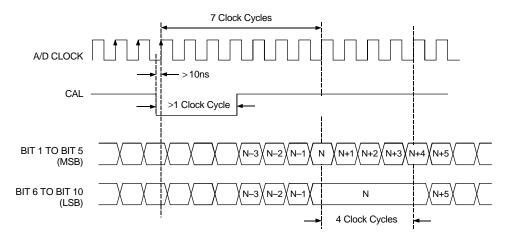


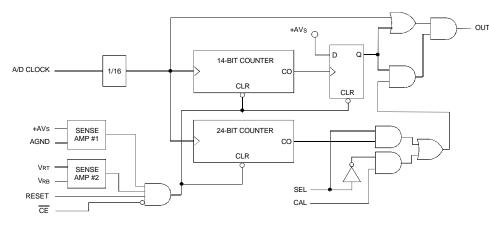
Figure 3. Calibration Timing Diagram

Table 2. Digital Output Truth Table

Re-initiating the Start-up Calibration

The start-up calibration function can be re-initiated at any time desired after the power and the references are supplied. Apply a positive pulse to \overline{CE} pin (pin 24) or a negative pulse to RESET pin (pin 15). The pulse width of these pulses must be equal to or wider than one A/D clock cycle. Also due to this feature, you can make sure of a proper start-up calibration at power-up by making a C-R delay connection with the RESET pin as shown in Figure 4c.

Using Start-up Calibration Function Only


Internal and external calibration functions need not be employed after start-up calibration. To use only the start-up calibration function, connect the SEL pin (pin 17) to AGND and the CAL pin (pin 14) to +AVs or AGND.

Auto Calibration Function

After the start up calibration is completed, the internal calibration function can periodically and automatically generate calibration pulses when the auto calibration mode is enabled. To enable this function connect the SEL pin (pin 17) and the CAL pin (pin 41) to +AVs. In this mode a 24-bit counter is counted with every 16 A/D clock cycles and the carry-out is used as the calibration pulse. The period of the calibration pulse generated is as follows:

Period of Auto-calibration pulse = 1/fcLK x 16 x 16,777,216

For the case when the A/D clock frequency is 14.3MHz, the calibration pulse generation cycle is 18.8 seconds. Since a single calibration process is performed once every seven pulses, the total calibration cycle is approximately 132 seconds.

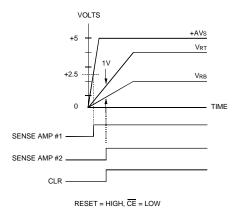


Figure 4b. Conditions for Start-Up Calibration

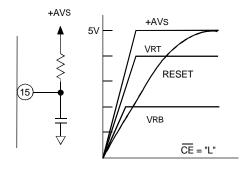


Figure 4c. Start-up Calibration using RESET

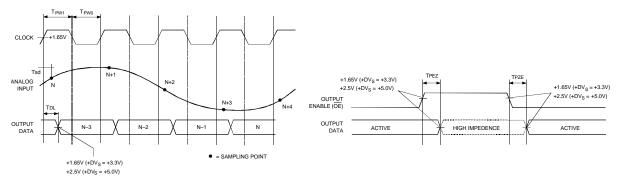
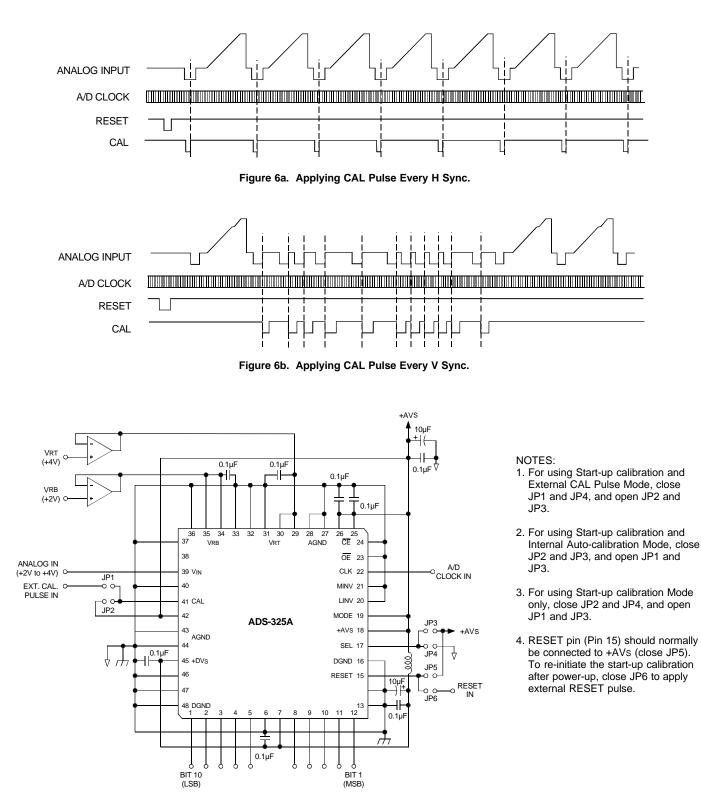
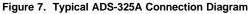


Figure 5. ADS-325A Timing Diagrams




As stated before, the five lower bits of the output data will remain constant for 4 clock cycles with every generation of the calibration pulse. Since the auto calibration pulses are generated asynchronously, this may create problems in certain applications.

External Calibration Function

To avoid the asynchronous data fixation due to the calibration

process, you can disable the internal auto calibration function and use an external calibration pulse which is synchronized with the analog input. Input the external calibration pulse to the CAL pin (pin 14) and tie the SEL pin (pin 17) to AGND. When digitizing a video signal, for example, you can synchronize the external calibration pulses with the V-sync or H-sync cycles of the video signal to avoid losing any data during the video signal cycles. See figure 6a. and 6b.

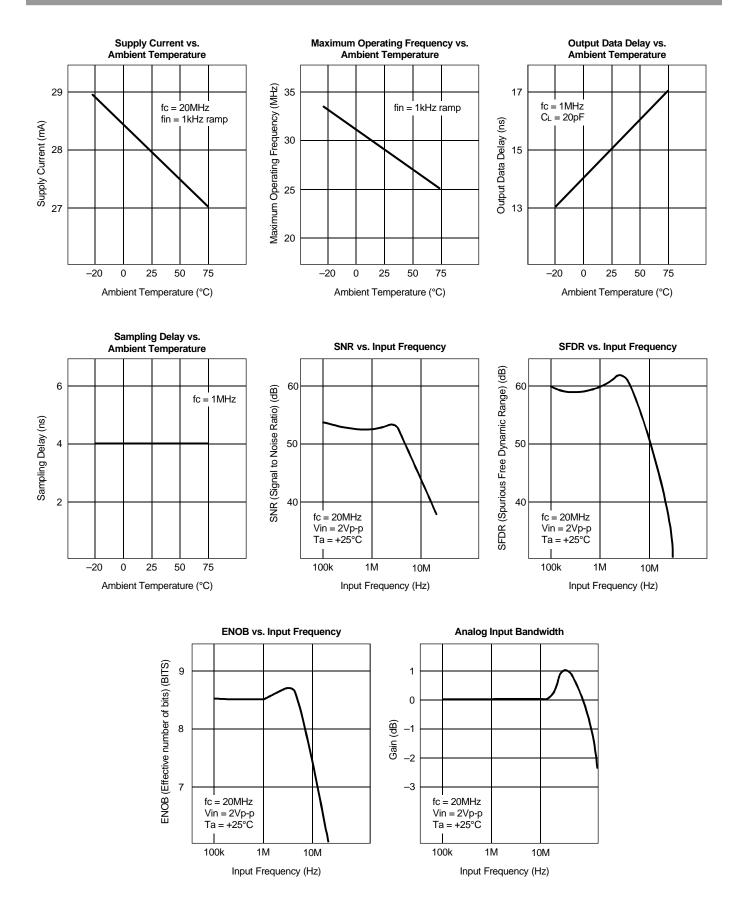
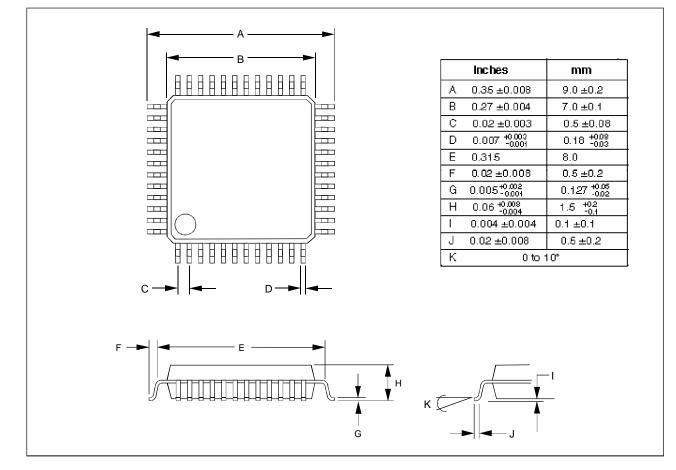



Figure 8. Typical Performance Curves

MECHANICAL DIMENSIONS

ORDERING INFORMATION

Model Number	Bits/Throughput Rate	Package
ADS-325A	10 Bits/20MHz	48-pin, plastic LQFP

DS-0297A 03/98

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1151 Tel: (508) 339-3000 (800) 233-2765 Fax: (508) 339-6356 Internet: www.datel.com Email: sales@datel.com Data Sheet Fax Back: (508) 261-2857 DATEL (UK) LTD. Tadley, England Tel: (01256)-880444 DATEL S.A.R.L. Montigny Le Bretonneux, France Tel: 1-34-60-01-01 DATEL GmbH Munchen, Germany Tel: 89-544334-0 DATEL KK Tokyo, Japan Tel: 3-3779-1031, Osaka Tel: 6-354-2025

DATEL makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein do not imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith. Specifications are subject to change without notice. The DATEL logo is a registered DATEL, Inc. trademark.