

BIPOLAR ANALOG INTEGRATED CIRCUIT

μ PC8230TU

SiGe:C LOW NOISE AMPLIFIER FOR GPS

DESCRIPTION

The μ PC8230TU is a silicon germanium carbon (SiGe:C) monolithic integrated circuit designed as low noise amplifier for GPS. This device exhibits low noise figure and high power gain characteristics, so this IC can improve the sensitivity of GPS receiver. In addition, the μ PC8230TU which is included output matching circuit contributes to reduce external components and system size.

The package is 8-pin lead-less minimold suitable for surface mount.

This IC is manufactured using our UHS4 (<u>U</u>Itra <u>High Speed Process</u>) SiGe:C bipolar process.

FEATURES

Low noise : NF = 0.85 dB TYP. @ fin = 1 575 MHz
 High gain : GP = 18.5 dB TYP. @ fin = 1 575 MHz
 Low current consumption : Icc = 6.0 mA TYP. @ Vcc = 3.0 V

Built-in power-saving function

High-density surface mounting : 8-pin lead-less minimold package (2.0 × 2.0 × 0.5 mm)

· Included output matching circuit

Included very robust bandgap regulator (Small Vcc and TA dependence)

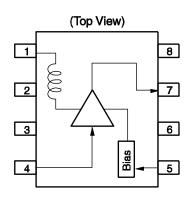
Included protection circuits for ESD

APPLICATION

· Low noise amplifier for GPS

ORDERING INFORMATION

I	Part Number	Order Number Package		Marking	Supplying Form
	μPC8230TU-E2	μPC8230TU-E2-A	8-pin lead-less minimold (Pb-Free)	8230	 8 mm wide embossed taping Pin 5, 6, 7, 8 indicates pull-out direction of tape Qty 5 kpcs/reel


Remark To order evaluation samples, contact your nearby sales office.

Part number for sample order: μ PC8230TU-A

Caution: Observe precautions when handling because these devices are sensitive to electrostatic discharge

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

PIN CONNECTIONS AND INTERNAL BLOCK DIAGRAM

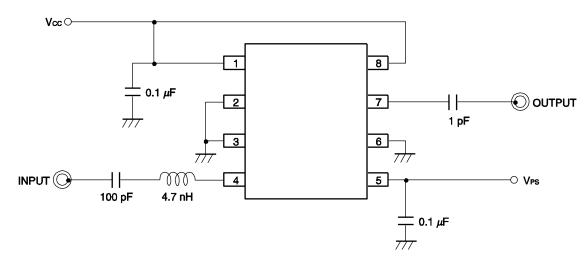
Pin No.	Pin Name		
1	Vcc		
2	N.C.		
3	GND		
4	INPUT		
5	Power Save		
6	GND		
7	OUTPUT		
8	Vcc		

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Test Conditions	Ratings	Unit
Supply Voltage	Vcc	TA = +25°C	4.0	V
Power-Saving Voltage	VPS	TA = +25°C	4.0	V
Power Dissipation	PD	$T_A = +85^{\circ}C$ Note	295	mW
Operating Ambient Temperature	TA		-40 to +85	°C
Storage Temperature	Tstg		-55 to +150	°C
Input Power	Pin		+10	dBm

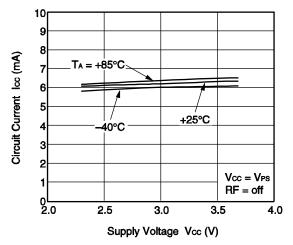
Note Mounted on double-side copper-clad $50 \times 50 \times 1.6$ mm epoxy glass PWB

RECOMMENDED OPERATING RANGE

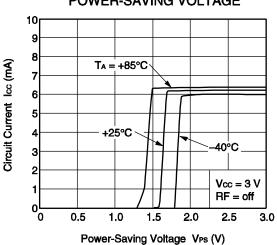

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Supply Voltage	Vcc	2.7	3.0	3.3	V
Operating Ambient Temperature	TA	-40	+25	+85	°C
Power Save Turn-on Voltage	VPSon	2.2	-	Vcc	V
Power Save Turn-off Voltage	VPSoff	0	-	0.8	V

ELECTRICAL CHARACTERISTICS

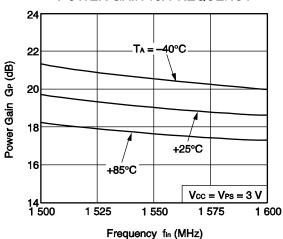
(TA = +25°C, Vcc = VPS = 3.0 V, fin = 1 575 MHz, unless otherwise specified)

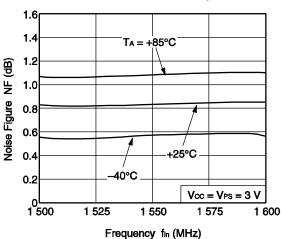

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Circuit Current	Icc	No Signal (VPS = 3.0 V)	4.5	6.0	8.0	mA
		At Power-Saving Mode (V _{PS} = 0 V)	-	-	1	μΑ
Power Gain	G₽	Pin = -35 dBm	16	18.5	21	dB
Noise Figure	NF		-	0.85	1.15	dB
Input 3rd Order Distortion Intercept Point	IIP ₃	fin1 = 1 574 MHz, fin2 = 1 575 MHz	-	-5	-	dBm
Input Return Loss	RLin		8	11	-	dB
Output Return Loss	RLout		7	10	-	dB
Isolation	ISL		_	39	Ī	dB
Gain 1 dB Compression Input Power	Pin (1 dB)		_	-17	-	dBm

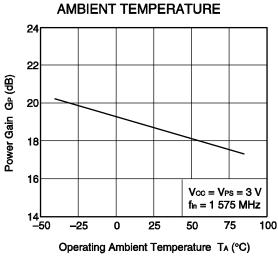
TEST CIRCUIT

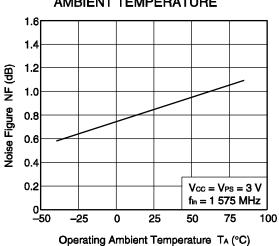


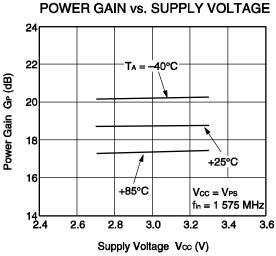
TYPICAL CHARACTERISTICS (TA = +25°C, unless otherwise specified)

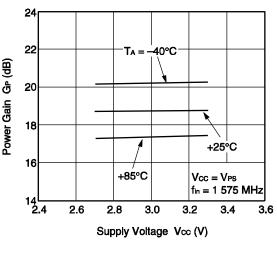


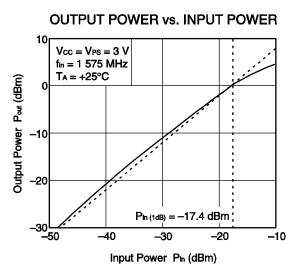

CIRCUIT CURRENT vs. POWER-SAVING VOLTAGE

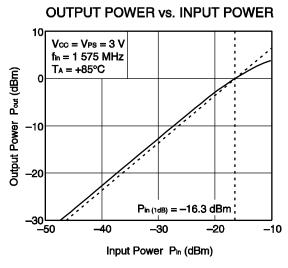

POWER GAIN vs. FREQUENCY


NOISE FIGURE vs. FREQUENCY

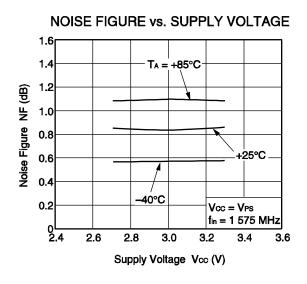

POWER GAIN vs. OPERATING AMBIENT TEMPERATURE

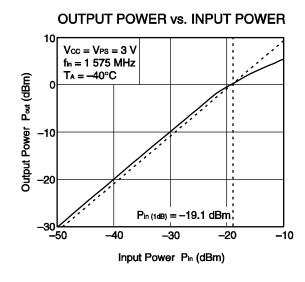


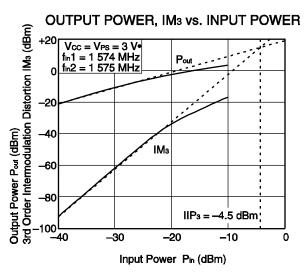

NOISE FIGURE vs. OPERATING AMBIENT TEMPERATURE

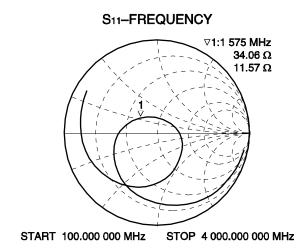


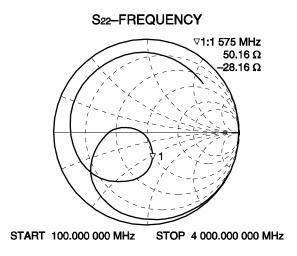
Remark The graphs indicate nominal characteristics.

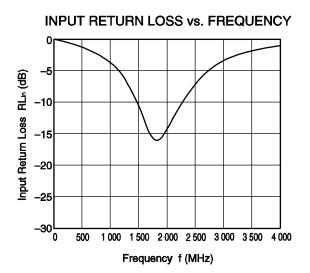


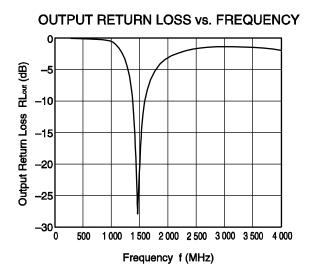


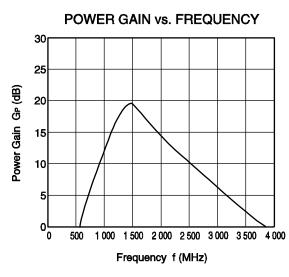


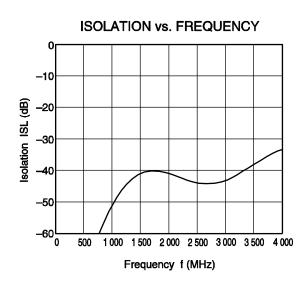


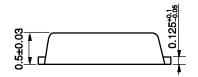


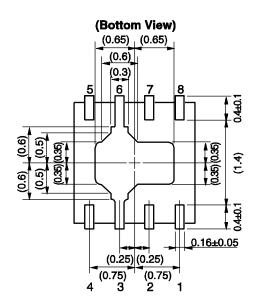





S-PARAMETERS (TA = +25°C, Vcc = VPS = 3.0 V, monitored at connector on board)






Remark The graphs indicate nominal characteristics.

PACKAGE DIMENSIONS

8-PIN LEAD-LESS MINIMOLD (UNIT: mm)

(Top View) 2.0±0.1 8 7 6 5 8230 1 2 3 4

Remark (): Reference value

NOTES ON CORRECT USE

- (1) Observe precautions for handling because of electro-static sensitive devices.
- (2) Form a ground pattern as widely as possible to minimize ground impedance (to prevent undesired oscillation).
 All the ground terminals must be connected together with wide ground pattern to decrease impedance difference.
- (3) The bypass capacitor should be attached to Vcc line.
- (4) Do not supply DC voltage to INPUT pin.

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your nearby sales office.

Soldering Method	Soldering Conditions	Condition Symbol	
Infrared Reflow	Peak temperature (package surface temperature) Time at peak temperature Time at temperature of 220°C or higher Preheating time at 120 to 180°C Maximum number of reflow processes Maximum chlorine content of rosin flux (% mass)	: 260°C or below : 10 seconds or less : 60 seconds or less : 120±30 seconds : 3 times : 0.2%(Wt.) or below	IR260
Wave Soldering	Peak temperature (molten solder temperature) Time at peak temperature Preheating temperature (package surface temperature) Maximum number of flow processes Maximum chlorine content of rosin flux (% mass)	: 260°C or below : 10 seconds or less	WS260
Partial Heating	Peak temperature (terminal temperature) Soldering time (per side of device) Maximum chlorine content of rosin flux (% mass)	: 350°C or below : 3 seconds or less : 0.2%(Wt.) or below	HS350

Caution Do not use different soldering methods together (except for partial heating).

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

CEL:

UPC8230TU-A UPC8230TU-KB-A UPC8230TU-KB-E2-A

NEC:

UPC8182TB