AMC1117

1A Low Dropout
 Positive Regulator

DESCRIPTION

The AMC1117 series of positive adjustable and fixed regulators is designed to provide 1A for applications requiring high efficiency. All internal circuitry is designed to operated down to 800 mV input to output differential and the dropout voltage is fully specified as a function of load current.

The AMC1117 offers current limiting and thermal protection. The on chip trimming adjusts the reference voltage accuracy to 1%.

FEATURES

- Output current of 1A typical
- Three-terminal adjustable or fixed $1.5 \mathrm{~V}, 1.8 \mathrm{~V}$, $2.5 \mathrm{~V}, 3.3 \mathrm{~V}, 5.0 \mathrm{~V}$ outputs
- Low dropout of typical 800 mV
- Thermal protection built in
- Typical 0.015% line regulation
- Typical 0.01% load regulation
- Fast transient response
- Available in SOT-223 and TO-252 packages
- Pin assignment identical to earlier LT1117 series.

APPLICATIONS

- 2.85 V Model for SCSI-2 Active Termination
- Battery Charger
- High Efficiency Linear Regulators
- Battery Powered Instrumentation
- Post Regulator for Switching DC/DC Converter

VOLTAGE OPTIONS

AMC1117-1.5	-1.5 V Fixed
AMC1117-1.8	-1.8 V Fixed
AMC1117-2.5	-2.5 V Fixed
AMC1117-3.3	-3.3 V Fixed
AMC1117-5.0	-5.0 V Fixed
AMC1117	- Adjustable Output

PACKAGE PIN OUT

3-Pin Plastic SOT-223 Surface Mount (Top View)

3-Pin Plastic TO-252 Surface Mount (Top View)

ORDER INFORMATION

$\mathrm{T}_{\mathrm{A}}\left({ }^{\circ} \mathrm{C}\right)$	SK	SOT-223	SJ	TO-252
		3-pin		3-pin
0 to 70	AMC1117-X.XSKF (Lead Free)		AMC1117-X.XSJF (Lead Free)	
	AMC1117SKF (Lead Free)		AMC1117SJF (Lead Free)	

Note: 1.All surface-mount packages are available in Tape \& Reel. Append the letter "T" to part number (i.e. AMC1117-X.XSJT). 2.The letter " F " is marked for Lead Free process.

AMC1117

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS \quad (Note1)	
Input Voltage 7 V Operating Junction Temperature Range, T_{J} $0^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (soldiering, 10 seconds) $260^{\circ} \mathrm{C}$ Note 1: Exceeding these ratings could cause damage to the device. All voltages are with respect to Ground. out of the specified terminal. Currents are positive into, negative	

POWER DISSIPATION TABLE

Package	θ_{JA} $\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$	Derating factor $\left(\mathrm{mW} /{ }^{\circ} \mathrm{C}\right)$ $\mathrm{T}_{\mathrm{A}} \geq 25^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C}$ Power rating (mW)	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$ Power rating (mW)	$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$ Power rating (mW)
SKF	136	7.35	919	588	478
SJF	80	12.5	1562	1000	812

Note :

1. θ_{JA} : Thermal Resistance-Junction to Ambient, D_{F} : Derating factor, Po: Power consumption.

Junction Temperature Calculation: $\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}}+\left(\mathrm{P}_{\mathrm{D}} \times \theta_{\mathrm{JA}}\right), \mathrm{Po}=\mathrm{D}_{\mathrm{F}} \times\left(\mathrm{T}_{\mathrm{J}}-\mathrm{T}_{\mathrm{A}}\right)$
The θ_{JA} numbers are guidelines for the thermal performance of the device/PC-board system.
All of the above assume no ambient airflow.
2. $\theta_{\text {JT: }}$ Thermal Resistance-Junction to Tab, $\mathrm{T}_{\mathrm{C}}:$ case (Tab) temperature, $\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{C}}+\left(\mathrm{P}_{\mathrm{D}} \times \theta_{\mathrm{JT}}\right)$

For SK package, $\theta_{\text {JT }}=15.0^{\circ} \mathrm{C} / \mathrm{W}$.
For SJ package, $\theta_{J T}=7.0^{\circ} \mathrm{C} / \mathrm{W}$.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Recommended Operating Conditions		Units		
		Min.	Typ.			
Input Voltage	$\mathrm{V}_{\text {IN }}$	2.7		7	V	
Load Current (with adequate heat sinking)	I_{O}	5			mA	
Input Capacitor (V $\mathrm{V}_{\text {IN }}$ to GND)		10			$\mu \mathrm{~F}$	
Output Capacitor with ESR of 10Ω max., (V $\mathrm{V}_{\text {OUT }}$ to GND)		10			$\mu \mathrm{~F}$	
Junction temperature		T_{J}			125	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $\mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}$, and $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$.

Parameter		Symbol	Test Conditions	AMC1117			Units	
		Min		Typ	Max			
Reference Voltage	AMC1117		$\mathrm{V}_{\text {ReF }}$	$\mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=5 \mathrm{~V}$	1.238	1.250	1.262	V
		$10 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1 \mathrm{~A}, 2.65 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 7 \mathrm{~V}$		1.225	1.250	1.275		
Output Voltage	AMC1117-1.5	$\mathrm{V}_{\text {Out }}$	$\mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=3.0 \mathrm{~V}$	1.485	1.500	1.515	V	
			$10 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1 \mathrm{~A}, 3.0 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 7 \mathrm{~V}$	1.470	1.500	1.530		
	AMC1117-1.8		$\mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=3.3 \mathrm{~V}$	1.782	1.8	1.818		
			$10 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1 \mathrm{~A}, 3.3 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 7 \mathrm{~V}$	1.764	1.8	1.836		
	AMC1117-2.5		$\mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=4.0 \mathrm{~V}$	2.475	2.500	2.525		
			$10 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1 \mathrm{~A}, 4.0 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 7 \mathrm{~V}$	2.450	2.500	2.550		
	AMC1117-3.3		$\mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=4.8 \mathrm{~V}$	3.267	3.300	3.333		
			$10 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1 \mathrm{~A}, 4.8 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 7 \mathrm{~V}$	3.235	3.300	3.365		
	AMC1117-5.0		$\mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=6.5 \mathrm{~V}$	4.950	5.000	5.050		
			$10 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1 \mathrm{~A}, 6.5 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 7 \mathrm{~V}$	4.900	5.000	5.100		
Line Regulation	AMC1117	$\Delta \mathrm{V}_{\text {OI }}$	$\mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}, \mathrm{~V}_{\text {OUT }}+1.5 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 7 \mathrm{~V}$		0.04	0.20	\%	
	AMC1117-X.X		$\mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}, \mathrm{~V}_{\text {OUT }}+1.5 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 7 \mathrm{~V}$		1.0	6.0	mV	
Load Regulation	AMC1117	$\Delta \mathrm{V}_{\text {OL }}$	$10 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1 \mathrm{~A}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {OUT }}+1.5 \mathrm{~V}$		0.10	0.40	\%	
	AMC1117-X.X		$10 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 1 \mathrm{~A}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {OUT }}+1.5 \mathrm{~V}$		1.0	10.0	mV	
Dropout Voltage		$\Delta \mathrm{V}$	$\mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}, \mathrm{~V}_{\text {IN }} \geqq 2.65 \mathrm{~V}$		0.8	1.15	V	
		$\mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{~V}_{\text {IN }} \geqq 2.65 \mathrm{~V}$		0.8	1.25			
		$\mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}, \mathrm{~V}_{\text {IN }} \geqq 2.65 \mathrm{~V}$		0.8	1.30			
Minimum Load Current ${ }^{\text {(Note 1) }}$				$\mathrm{V}_{\text {IN }} \leq 7 \mathrm{~V}$		2	7	mA
Quiescent Current	AMC1117-X.X		I_{Q}	$\mathrm{V}_{\text {IN }} \leq 7 \mathrm{~V}$		6	13	mA
Current Limit		I_{CL}	$\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}=3 \mathrm{~V}$	1	1.2		A	
Adjust Pin Current			$\mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}$		50	120	$\mu \mathrm{A}$	
Thermal Regulation ${ }^{\text {(Note 2) }}$			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 30 \mathrm{~ms}$ pulse		0.01	0.1	\%/W	
Ripple rejection ${ }^{\text {(Note 2) }}$		R_{R}	$\begin{aligned} & \mathrm{f}_{\mathrm{O}}=120 \mathrm{~Hz}, 1 \mathrm{~V}_{\mathrm{RMS}}, \mathrm{I}_{\mathrm{O}}=400 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{OUT}}=3 \mathrm{~V} \end{aligned}$	60	75		dB	

Note 1: For the adjustable device, the minimum load current is the minimum current required to maintain regulation. Normally the current in the resistor divider used to set the output voltage is selected to meet the minimum load current requirement.
Note 2: These parameters, although guaranteed, are not tested in production.

CHARACTERIZATION CURVES

Unless otherwise specified, $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {OUT }}+2 \mathrm{~V}, \mathrm{C}_{\mathrm{IN}}=1 \mu \mathrm{~F}, \mathrm{C}_{\text {OUT }}=4.7 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Load Regulation

Temperature Stability

Quiescent Current vs. Temperature

APPLICATION INFORMATION

Adjustable Regulator
5V Regulator with Shutdown

Fixed Voltage Regulator

Application Note:

Maximum Power Calculation:

$$
\begin{aligned}
& P_{D(M A X)}=\frac{T_{\mathrm{J}(\mathrm{MAX})}-\mathrm{T}_{\mathrm{A}(\mathrm{MAX})}}{\theta_{\mathrm{IA}}} \\
& \mathrm{~T}_{\mathrm{J}}\left({ }^{\circ} \mathrm{C}\right) \text { : Maximum recommended junction temperature } \\
& \mathrm{T}_{\mathrm{A}}\left({ }^{\circ} \mathrm{C}\right) \text { : Ambient temperature of the application } \\
& \theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) \text { : Junction-to-junction temperature thermal resistance of the package, and other heat dissipating } \\
& \text { materials. } \\
& \text { The maximum power dissipation of a single-output regulator : } \\
& \mathrm{P}_{\mathrm{D}(\mathrm{MAX})}=\left[\left(\mathrm{V}_{\mathrm{IN}(\mathrm{MAX})}-\mathrm{V}_{\mathrm{OUT}(\mathrm{NOM})}\right)\right] \times \mathrm{I}_{\mathrm{OUT}(\mathrm{NOM})}+\mathrm{V}_{\mathrm{IN}(\mathrm{MAX})} \times \mathrm{I}_{\mathrm{Q}} \\
& \text { Where: } \quad \mathrm{V}_{\text {OUT(NOM) }}=\text { the nominal output voltage } \\
& \mathrm{I}_{\text {OUT(NOM) }}=\text { the nominal output current, and } \\
& \mathrm{I}_{\mathrm{Q}}=\text { the quiescent current the regulator consumes at } \mathrm{I}_{\mathrm{OUT}(\mathrm{MAX})} \\
& \mathrm{V}_{\text {IN(MAX })}=\text { the maximum input voltage } \\
& \theta_{\mathrm{JA}}=\left(150^{\circ} \mathrm{C}-\mathrm{T}_{\mathrm{A}}\right) / \mathrm{P}_{\mathrm{D}}
\end{aligned}
$$

Thermal consideration:

When power consumption is over about 404 mW (for SOT-223 package, 687 mW for TO-252 package, at $\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$), additional heat sink is required to control the junction temperature below $125^{\circ} \mathrm{C}$.

The junction temperature is: $\mathrm{T}_{\mathrm{J}}=\mathrm{P}_{\mathrm{D}}\left(\theta_{\mathrm{JT}}+\theta_{\mathrm{CS}}+\theta_{\mathrm{SA}}\right)+\mathrm{T}_{\mathrm{A}}$
P_{D} : Dissipated power.
θ_{JT} : Thermal resistance from the junction to the mounting tab of the package.
θ_{CS} : Thermal resistance through the interface between the IC and the surface on which it is mounted. (Typically,

$$
\left.\theta_{\mathrm{CS}}<1.0^{\circ} \mathrm{C} / \mathrm{W}\right)
$$

θ_{SA} : Thermal resistance from the mounting surface to ambient (thermal resistance of the heat sink).

If PC Board copper is going to be used as a heat sink, below table can be used to determine the appropriate size of copper foil required. For multi-layered PCB, these layers can also be used as a heat sink. They can be connected with several through hole vias.

PCB $\theta_{\mathrm{SA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$	59	45	38	33	27	24	21
PCB heat sink size $\left(\mathrm{mm}^{2}\right)$	500	1000	1500	2000	3000	4000	5000

Recommended figure of PCB area used as a heat sink.

(Top View)

(Bottom View)

PACKAGE

3-Pin Surface Mount SOT-223 (SK)

					MILLIMETERS		
				MIN	TYP	MAX	
			A	1.50	1.65	1.80	
			A1	0.02	0.05	0.08	
			B	0.60	0.70	0.80	
			B1	2.90	-	3.15	
			c	0.28	0.30	0.32	
			D	6.30	6.50	6.70	
			E	3.30	3.50	3.70	
			e		2.3 BS		
			e1		4.6 BS		
			H	6.70	7.00	7.30	
			L	0.91	1.00	1.10	
			K	1.50	1.75	2.00	
			α	0°	5°	10°	
			β		3°		

3-Pin Surface Mount TO-252 (SJ)

IMPORTANT NOTICE

Abstract

ADDtek reserves the right to make changes to its products or to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

A few applications using integrated circuit products may involve potential risks of death, personal injury, or severe property or environmental damage. ADDtek integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life-support applications, devices or systems or other critical applications. Use of ADDtek products in such applications is understood to be fully at the risk of the customer. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

ADDtek assumes to no liability to customer product design or application support. ADDtek warrants the performance of its products to the specifications applicable at the time of sale.

ADDtek Corp.

9F, No. 20, Sec. 3, Bade Rd., Taipei, Taiwan, 105
TEL: 2-25700299
FAX: 2-25700196

