

Features:

- 5,000 Vrms electrical isolation
- · Choice of a Single and Dual LED
- Phototransistor or Photodarlington Sensor
- Low-cost plastic Dual-In-Line (DIP) package

Approval Agency:

- UL Certification No: E58730
- VDE No: 40026625 40026536, 40026654

Description:

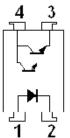
The OPIA series optocouplers are designed for applications that use an analog output (Phototransistor or Photodarlington) in a dual-in-line package. A wide selection of configurations are available. With typical isolation voltage of 5,000 Volts(RMS), these products meet typical power system isolation requirements.

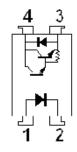
Theory of operation: The LED transmitter is used to illuminate the Photosensor providing electrical isolation between two power systems while maintaining the ability to transmit information from one power system to the other. In many applications, analog signal levels may be required to be transmitted between two power systems while maintaining isolation between the power systems up to 5,000 volts(RMS). A variety of LED and photosensor configurations are available depending on the system requirements.

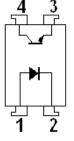
The ratio Current Transfer Ratio (CTR) is determined by using the output current and input current for analog photosensors. CTR ratios can range from as low as 5 to over 9,000 depending on the device.

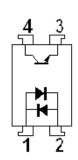
$$CTR = \frac{Photosenso \quad r - Current}{LED - Current} = \frac{20 \text{ mA}}{10 \text{ mA}} * 100 = 200$$

All DIP product is shipped in a shipping tube with "TU" identified on the end of the part number. Example: OPIA817DTUE is a 4-Pin DIP shipped in a tube (TU).

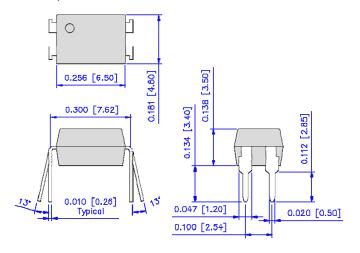

Applications:


- High voltage isolation: 5,000 Volts RMS
- PCBoard power system isolation
- Industrial equipment power isolation
- Medical equipment power isolation
- Office equipment


Package Outline Dimensions and Schematics: Top-View



OPIA815


OPIA4010

OPIA817 OPIA1210

OPIA814

Dord Normalism	Pin #									
Part Number	1	2	3	4						
OPIA817	А	К	E	С						
OPIA814	A-K	K-A	E	С						
OPIA815	Α	К	E	С						
OPIA4010	Α	К	E	С						
OPIA1210	Α	K	E	С						

	Analog Output Devices Ordering Information										
Part Number	Isolation Voltage Max. (Vrms)	CTR Min/Typ/Max	Typ. Tr / Tf (μs) R _L = 100 ohms	Package	Configuration						
OPIA817D	5,000	50 / - / 600	4/3	4-Pin DIP	A K—C E						
OPIA814D	5,000	60 / - / 600	5 / 4	4-Pin DIP	A K, K A—C E						
OPIA815D	5,000	70 / - / -	80 / 72	4-Pin DIP	A K—C E (Dar)						
OPIA4010D	5,000	600 / - / 9,000	60 / 50	4-Pin DIP	A K—C E (Dar)						
OPIA1210D	5,000	50 / - / 600	2/3	4-Pin DIP	A K—C E						
	Configuration: Definition of Terms LED Identification—Sensor Identification										
Configuration	LED	A = Anode	K = Cathode								
Information	Sensor	B = Base	C = Collector	E = Emitter	(Dar) = Photodarlington						

Packaging	Part Number Suffix:	TU = Shipped in Tubes	Example:
			OPIA817D <u>TU</u> E

Absolute Maximum F	Ratings (T. =	= 25° C unless	otherwise noted)
ADSOIDLE MAXIIIUIII I	vaurigo (r a -	- 20 0 0111633	Olliel Wise Holed)

Storage Temperature	-55° C to +125° C
Operating Temperature	-30° C to +100° C
Isolation voltage (1 minute)	5,000 Vrms
Total Package Power Dissipation	200 mW
Lead Soldering Temperature (1/16" (1.6 mm) from case for 5 seconds with soldering iron)	260° C

Input Diode

Continuous Forward Current	50 mA
Peak Forward current (1 μs pulse width, 300 pps)	1 A
Reverse Voltage OPIA817, OPIA815, OPIA4010, OPIA1210 OPIA814, OPIA4010	6 V
Power Dissipation	70 mW

Output Phototransistor

Collector-Emitter Voltage OPIA817, OPIA814 OPIA4010 OPIA815 OPIA1210	60 V 300 V 35 V 350 V
Emitter-Collector Voltage OPIA817, OPIA814, OPIA815 OPIA4010 OPIA1210	6 V 0.1 V 7 V
Collector Current OPIA817, OPIA814, OPIA1210 OPIA4010 OPIA815	50 mA 150 mA 80 mA
Power Dissipation All except the part numbers noted below OPIA4010	150 mW 200 mW

Electrical	Characteristics
-------------------	-----------------

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Input Dio	de					
V_{F}	Forward Voltage All except those noted below OPIA1210	1.0	1.2 1.2	1.4 1.3	V	I _F = 20 mA I _F = 10 mA
$V_{\sf FM}$	Peek Forward Voltage OPIA814, OPIA4010 OPIA1210		-	3.5 3.0	V	I _{FM} = 500 mA
I _R	Reverse Current All except those noted below OPIA814 OPIA1210	- - -	- - -	10 - 10	μΑ	V _R = 4 V - V _R = 5 V
C _t	Terminal Capacitance All except those noted below OPIA815		30 30	- 250	pf	V = 0.0 V, f = 1K Hz V = 0.0 V, f = 1K Hz
Output Ph	ototransistor					
I _{CEO}	Collector Dark Current OPIA817, OPIA814 OPIA1210		- 10	100 200	nA	$I_F = 0$ mA, $V_{CE} = 20$ V $I_F = 0$ mA, $V_{CE} = 300$ V
V _{CE(SAT)}	Collector-Emitter Saturation Voltage OPIA817 OPIA814 OPIA1210		0.1 0.1 -	0.2 0.3 0.4	V	$I_F = 20 \text{ mA}, I_C = 1 \text{ mA}$ $I_F = 20 \text{ mA}, I_C = 1 \text{ mA}$ $I_F = 8 \text{ mA}, I_C = 2.4 \text{ mA}$
f _C	Cutt-Off Frequency All except those noted below OPIA817, OPIA814, OPIA1210		- 80	- -	K Hz	V_{CC} = 5 V, I_C = 2 mA, R_L = 100 Ω
t _R	Rise Time OPIA817 OPIA814 OPIA1210		4 5 2	18 20 -	μs	$V_{CC} = 2 \text{ V, } I_{C} = 2 \text{ mA, } R_{L} = 100 \ \Omega$ $V_{CC} = 2 \text{ V, } I_{C} = 2 \text{ mA, } R_{L} = 100 \ \Omega$ $V_{CC} = 10 \text{ V, } I_{C} = 2 \text{ mA, } R_{L} = 100 \ \Omega$
t _F	Fall Time OPIA817D OPIA814 OPIA1210	- - -	3 4 3	18 20 -	μs	$\begin{aligned} &V_{CC} = 2 \text{ V, } I_{C} = 2 \text{ mA, } R_{L} = 100 \ \Omega \\ &V_{CC} = 2 \text{ V, } I_{C} = 2 \text{ mA, } R_{L} = 100 \ \Omega \\ &V_{CC} = 10 \text{ V, } I_{C} = 2 \text{ mA, } R_{L} = 100 \ \Omega \end{aligned}$
	(Continued	on Ne	t Page	-	

Electrical Characteristics - Continued from Previous Page

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Output Ph	otoDarlington					
I _{CEO}	Collector Dark Current OPIA4010 OPIA815		- -	1.0 1.0	μΑ	$I_F = 0$ mA, $V_{CE} = 200$ V $I_F = 0$ mA, $V_{CE} = 10$ V
V _{CE(SAT)}	Collector-Emitter Saturation Voltage OPIA815 OPIA4010	- -	0.8	1.0 1.5	V	I _F = 20 mA, I _C = 5 mA I _F = 20 mA, I _C = 5 mA
f_{C}	Cut-Off frequency OPIA815 OPIA4010	1.0	6.0 7.0	1 1	K Hz	V_{CC} = 2 V, I_C = 20 mA, R_L = 100 Ω V_{CC} = 5 V, I_C = 2 mA, R_L = 100 Ω
t _r	Rise Time OPIA815 OPIA4010		80 60	300 300	μs	$\begin{aligned} &V_{CC}=2~V,~I_C=20~mA,~R_L=100~\Omega\\ &V_{CC}=2~V,~I_C=20~mA,~R_L=100~\Omega \end{aligned}$
t _f	Fall Time OPIA815 OPIA4010		72 50	250 250	μs	V_{CC} = 2 V, I_C = 20 mA, R_L = 100 Ω V_{CC} = 2 V, I_C = 20 mA, R_L = 100 Ω
Coupled C	haracteristics					
CTR	Current Transfer Ratio OPIA817, OPIA1210 OPIA814 OPIA815 OPIA4010	50 60 70 600		600 600 - 9,000	%	$I_{F} = 5.00 \text{ mA}, \ V_{CE} = 5.0 \text{ V}$ $I_{F} = 1.00 \text{ mA}, \ V_{CE} = 2.0 \text{ V}$ $I_{F} = 0.05 \text{ mA}, \ V_{CE} = 3.3 \text{ V}$ $I_{F} = 1.00 \text{ mA}, \ V_{CE} = 2.0 \text{ V}$
C _f	Floating Capacitance		0.6	1.0	pF	V = 0.0 V, f = 1M Hz
R _{ISO}	Isolation Resistance	5X10 ¹⁰	10 ¹¹	-	ohm	C500V, 40% to 60%RH

OPIA817

Fig.6 Collector Current vs.
Collector-Emitter Voltage

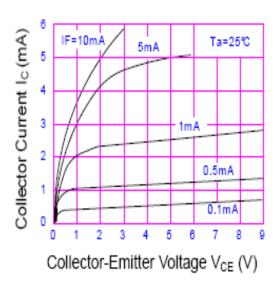


Fig.4 Forward Current vs.
Ambient Temperature

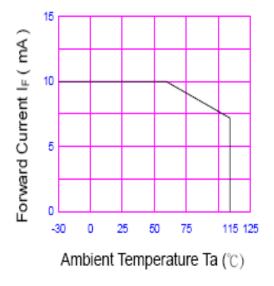


Fig.7 Relative Current Transfer Ratio vs. Ambient Temperature

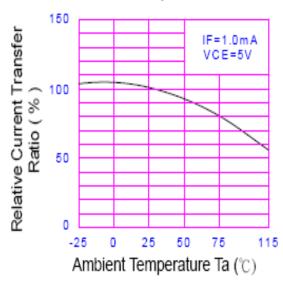
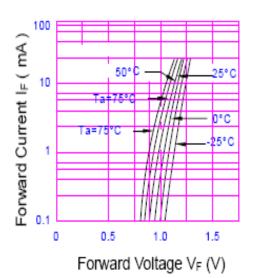



Fig.5 Forward Current vs. Forward Voltage

OPIA817

Fig.8 Collector-Emitter Saturation Voltage vs. Ambient Temperature

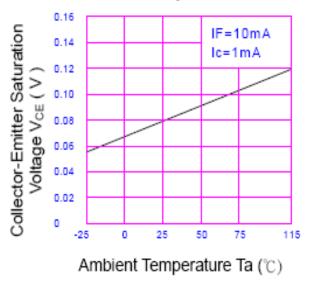


Fig.9 Collector-Emitter Saturation Voltage vs. Forward Current

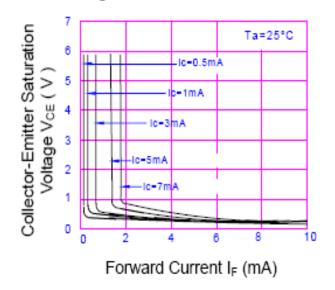
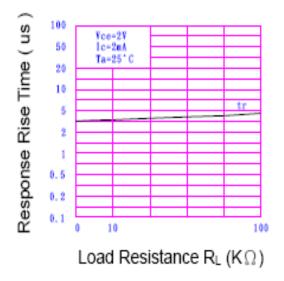
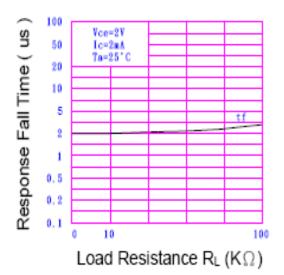
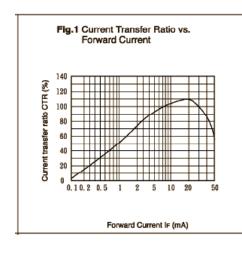
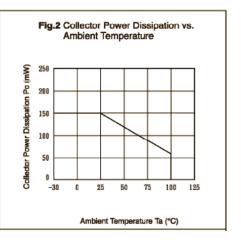
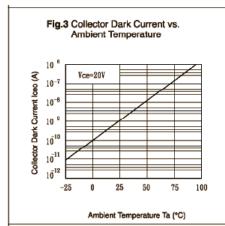
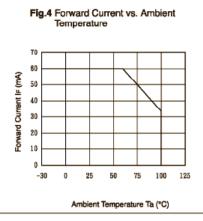


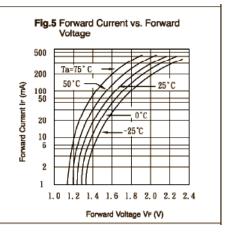
Fig. 10 Response Time vs. Load Resistance

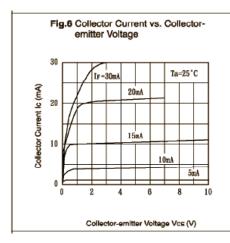




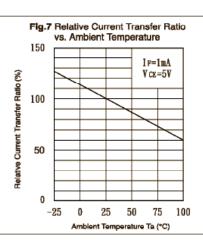

Fig.11 Response Time vs. Load Resistance

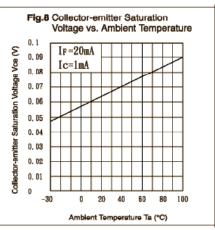


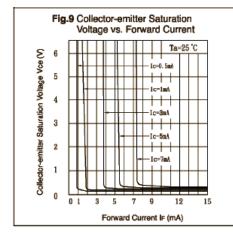


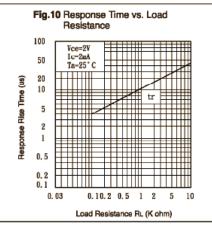

OPIA814

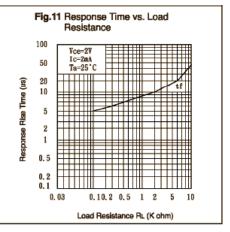












OPIA814

OPIA815

Fig. 1 Forward Current vs.

Ambient Temperature

60

50

10

20

-30

0

25

50

75

100

125

Fig. 3 Collector-emitter Saturation Voltage vs. Forward Current

Ambient temperature Ta(°C)

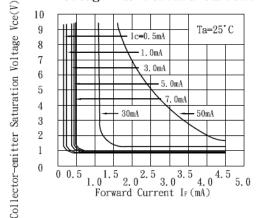


Fig. 5 Current Transfer Ratio vs. Forward Current

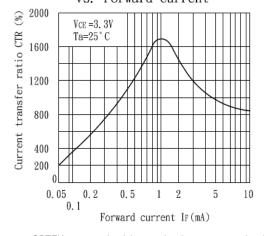


Fig. 2 Collector Power Dissipation

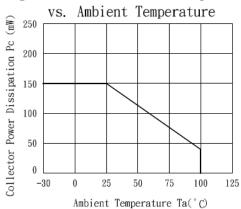


Fig. 4 Forward Current vs. Forward Voltage

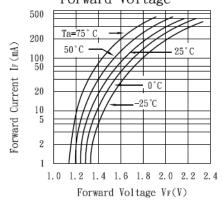
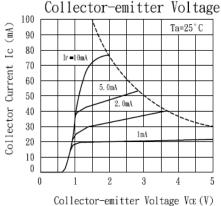



Fig. 6 Collector Current vs.

OPIA815

Fig. 7 Relative Current Transfer Ratio vs. Ambient Temperature

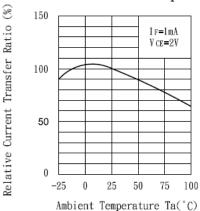


Fig. 7 Collector-emitter Saturation Voltage vs. Ambient Temperature

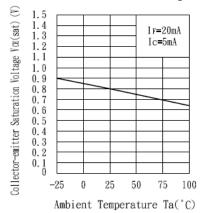


Fig. 9 Collector Dark Current vs.

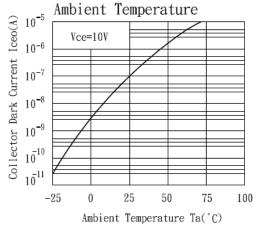
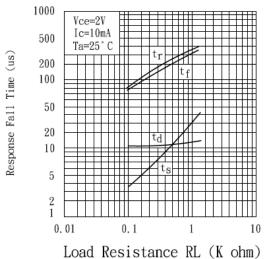



Fig. 10 Response Time vs. Load Resistance

OPI412

Fig. 4 Forward Current vs.

Ambient Temperature

60

40

40

30

20

-30

0

25

50

75

100

125

Fig. 2 Collector Power Dissipation

Ambient temperature Ta(°C)

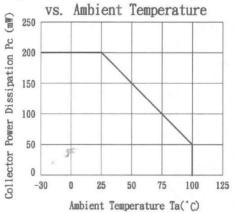


Fig. 6 Collector Current vs.

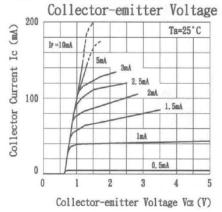


Fig. 5 Forward Current vs.

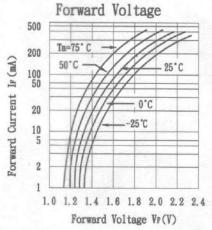
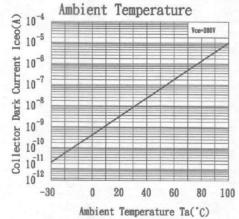
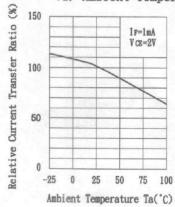
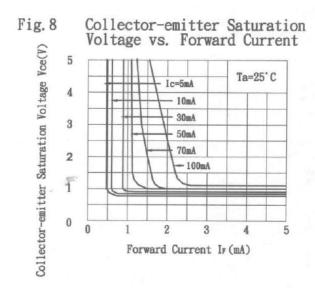
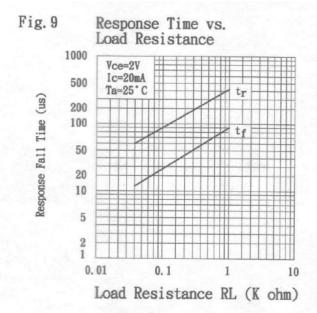
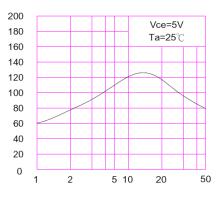


Fig. 3 Collector Dark Current vs.


Fig. 7 Relative Current Transfer Ratio vs. Ambient Temperature

OPI412



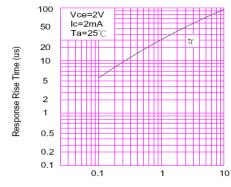

OPIA1210

Fig. 1 Current Transfer Ratio Vs. Forward Current

Forward current IF(mA)

Fig.10 Response Time vs. Load Resistance

Load Resistance RL(Kohm)

Fig.11 Response Time vs. Load Resistance

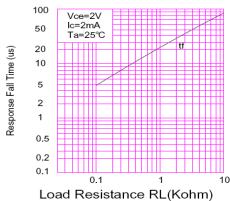


Fig.8 Collector-emitter Saturation Voltage vs. Ambient Temperature

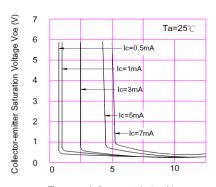



Fig.9 Collector-emitter Saturation Voltage vs. Forward Current

Forward Current IF(mA)

OPIA1210

Fig.4 Forward Current vs.

Ambient Temperature

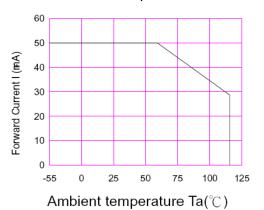


Fig.6 Collector Current vs.

Collector-emitter Voltage

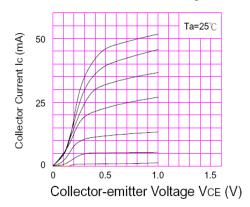


Fig.2 Collector Power Dissipation vs. Ambient Temperature

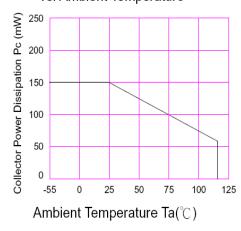


Fig.5 Forward Current vs. Forward Voltage

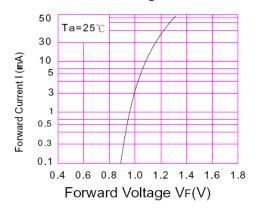


Fig.7 Relative Current Transfer Ratio vs. Ambient Temperature

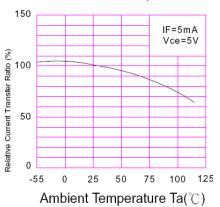
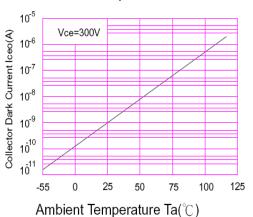



Fig.3 Collector Dark Current vs. Ambient Temperature

Quality / Reliability Requirements

Parameter	Failure Criteria	Conditions
LITER D.I.	± 10%	11 samples after 500Hrs
HTRB D I _{C(OFF)}	0 Fail	@ VCE = 5.0VDC, Ta = 70°C
HTED DI	± 10%	50 samples after 96Hrs
HTFB D I _{C(ON)}	0 Fail	@ Max P _D , Ta = 25°C
MTTF @ 90% confidence	150,000 Min.	@ 25°C, 25mADC
Moisture Sensitivity Level	MSL 1	per JDEC stnd J-STD-020B
Lead Solderability	0 Fail	per Method 208 of MIL-STD-202.
Glass Transition of body	125°C Min.	DSC test method
Temperature Humidity-Bias	± 20%	85°C, 85%RH, 500Hrs, 80% min Iceo
Temperature Cycle	± 20%	per Method 1010.7 of MIL-STD-883E
High Temperature Storage	± 20%	85°C, 500Hrs
Autoclave	0 Fail	$T_A = 121$ °C, Pressure = 15psi, Humidity = 100%, Time = 96Hrs

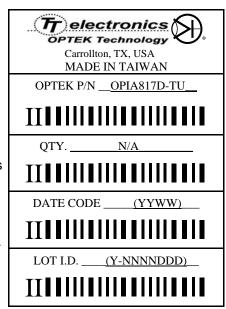
Note: This is to be performed when a change occurs to form, fit or function.

Government and Industry Standard Compliance Requirements

European Union's Reduction of Hazardous Substances (RoHS) Directive 2002/95/EC

Label Identification

DESCRIPTION:


Size: 3" (7.4 cm) X 2.2" (5.5 cm)

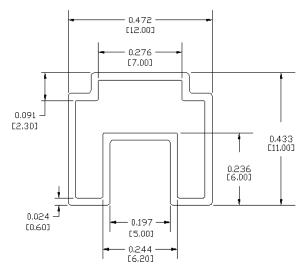
Lettering shall be black on white background.

Format shall be as:

Notes:

- The DATE CODE is a 4-digit code for date of manufacture where YY is the last two digits of the year, and WW is week number of manufacture.
- 2. The LOT I.D. is the manufacturing location lot identification where Y is the year of manufacture, NNNN is a sequential lot identifier, and DDD is the day of the year of manufacture. or use equivalent label format.

Packaging Information:


Ontol	alda Onta a sunlar		Tu	ube	ln:	Inner Small Carton M			Мо	Medium Carton			Large Carton		
Opter	k's Optocoupler	Dacksaina			52 x 7 :	7.5 cm	53.	5x 16x 17.5		53.5	× 30.7× 17.		53.5	5 x 30.7 x 29	
Part I	Numbers	Packaging Quantities	Qıy	Wolghe	Qq	Wolghe	Qq	Wolghe	Weight	Qq	Wolghe	Weight	Qq	Wolghe	Weigh
	4 PIN OPIA400D/A, OPIA410D/A - OPIA4	3D/A	100	44	3,000	1.40	12000	6.0	6.5	24000	12.0	12.5	36,000	18.0	18.5
P/H and SMD	6-PIN OPIA6XXID/A Series		65	44	1,990	1.50	7,800	6.5	7.0	15,600	12.0	12.5	23,400	18.5	19.0
SIID	8 PIN OPIA8XXD Series and OPID904D		48	44	1,440	1.44	5,760	6.0	6.5	11,520	12.0	12.5	17,290	18.0	18.5
M/F	OPIA5008, OPIA4018 - OPIA4048,	OPIA414B	100	24	6,000	1.60	24000	6.5	7.0	48,000	13.0	13.5	72,000	19.5	20.0
SSOP	OPIA405C - OPIA409C		170	-	10,200	-									

P/H = Pin-Hole Packages (Referred as D = Dual-in-Line Package) SMD = Standard Surface Mount Packages (Referred as A = 6.5mil SMD)

M/F or SOP = Mini-Flat Packages or Small Outside Packages (Referred as B=4.40mil SMD w/ 2.54 Lead-Spacing)

SSOP = Slim SOP Packages (Referred as C = 4.40mil SMD with 1.27 Lead-Spacing)

Tube Packaging Specifications (TU):

19.685±0.020 [500±0.5]

DIMENSIONS ARE IN: INCHES [MILLIMETERS]

TOLERANCE: ± 0.008 INCHES [± 0.2 MILLIMETERS]

Quantity: 4-pin: 100pcs/tube