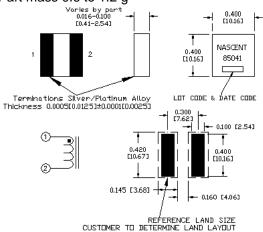


LTCC High Temperature Inductors 0.40x0.40 inch size Higher Current Series


NASCENTechnology, Inc. has developed a series of high temperature, RoHS compliant inductors using low temperature co-fired ceramic (LTCC) ferrite usable to 300°C that feature low profile, rugged packaging, and self shielding characteristics.

Electrical Parameters at 25 °C unless otherwise noted

Part No.	No Load Inductance [†] μΗ	100 mA Inductance µH	100 mA Tolerance	Nominal DC Resistance ohms	Rated Current ^{††} mA	Saturation Current* mA
85081	10.7	10.7	20%	0.28	-	950
85082	52	52	20%	1.4	-	350
85083	91	91	20%	2.75	-	290

[†]Tolerance for no load inductance is ±25 %

Part mass 0.6 to 1.2 g

Part dimension units: inches [millimeters]

For additional information, contact: Brian Nelson, National Sales Manager Phone: 605-878-2417, Fax: 605-884-2450, E-mail: bnelson@nascentechnology.com NASCENTechnology, Inc. 121 Airport Drive, Watertown, SD 57201 www.nascentechnology.com

^{††} Current will cause a 35 °C temperature rise over ambient (measured 20 to 55 °C)

^{*} Saturation Current is the current that results in a 35% decrease in inductance over the 100 mA Inductance.