BMR454 series Fully regulated Intermediate Bus Converters	EN/LZT 146 404 R4A February 2011
Input 36-75 V, Output up to 40 A / 240 W	© Ericsson AB

Key Features

- Industry standard five pin Eighth-brick • 58.4 x 22.7 x 10.2 mm (2.30 x 0.89 x 0.40 in.)
- Optional digital PMBus interface •
- Fully regulated intermediate bus converter
- High efficiency, typ. 95.5% at 12 Vout half load
- +/- 2% output voltage tolerance band •
- 1500 Vdc input to output isolation •
- 3 million hours MTBF •
- Optional baseplate ٠
- ISO 9001/14001 certified supplier •
- PMBus Revision 1.1 compliant ٠

Power Management

- Configurable soft start/stop •
- Precision delay and ramp-up
- Voltage sequencing and margining
- Voltage/current/temperature monitoring
- Wide output voltage range ٠
- Configurable protection features
- Synchronization ٠

Safety Approvals

Uı

FII

RoHS compatible

113613 903075 RECOGNIZED COMPONENT Conforms to ANSI/UL 60950-1 Certified to CAN/CSA-C22.2 No.60950-1

Meets requirements in hightemperature lead-free soldering processes

Contents

Ordering Information General Information Safety Specification Absolute Maximum Ratings Functional Description	2 2 3 5 6
Electrical Specification 3.3 V, 40 A / 132 W 5 V, 38 A / 190 W 9 V, 20 A / 180 W 12 V, 20 A / 240 W 12 V, 20 A / 240 W 8.1 V, 20 A / 162 W	BMR 454 0002/003
EMC Specification Operating Information Thermal considerations Connections PMBus communications Mechanical Information Soldering Information Delivery Information Product Qualification Specification	25 26 28 29 30 30 33 33 36 36 37

EN/LZT 146 404 R4A February 2011

BMR454 series Fully regulated Intermediate Bus Converters Input 36-75 V, Output up to 40 A / 240 W

Ordering Information

Product program	Output
BMR4540002/003	3.3 V / 40 A, 132 W
BMR4540002/004	5 V / 38 A, 190 W
BMR4540000/002	9 V / 20 A, 180 W
BMR4540000/001	12 V / 20 A, 240 W (Vin 40-75V)
BMR4540004/005	12 V / 20 A, 240 W (Vin 36-75V)

Product Number and Packaging

BMR454 n ₁ n ₂ n ₃ n ₄ /n ₅ n ₆ n ₇								
Options	n ₁	n ₂	n ₃	n ₄	/	n ₅	n ₆	n ₇
Mechanical pin option	x				/			
Mechanical option		x			/			
Hardware option			x	x	/			
Configuration file					/	x	x	x

Optional designation	Description
n ₁	0 = Standard pin length 5.33 mm 2 = Lead length 3.69 mm (cut) 3 = Lead length 4.57 mm (cut) 4 = Lead length 2.79 mm (cut)
n ₂	0 = Open frame 1 = Baseplate
n ₃ n ₄	00 = 8.1-13.2Vout with digital interface 01 = 8.1-13.2Vout without digital interface 02 = 3-6.7Vout with digital interface 03 = 3-6.7Vout without digital interface 04 = 12Vout with digital interface 05 = 12Vout without digital interface
Ν ₅ Ν ₆ Ν ₇	001 = 12 V Standard configuration (Vin 40-75V, available only for n3 n4 = 00 or 01) 002 = 9 V Standard configuration 003 = 3.3 V Standard configuration 004 = 5 V Standard configuration 005 = 12 V Standard configuration (Vin 36-75V, available only for n3 n4 = 04 or 05)
	007 = 9V with positive RC logic configuration 008 = 12V with positive RC logic configuration (Vin 40-75V, available only for n3 n4 = 00 or 01) 009 = 3.3V with positive RC logic configuration 010 = 5V with positive RC logic configuration 011 = 12V with positive RC logic configuration (Vin 36-75V, available only for n3 n4 = 04 or 05)
	xxx = Application Specific Configuration
Packaging	25 converters/tray, three (3) trays/box, PE foam dissipative

Example: Product number BMR4542000/002 equals an Through hole mount

© Ericsson AB

lead length 3.69 mm (cut), open frame, digital interface with 9 V standard configuration variant.

For application specific configurations contact your local Ericsson Power Modules sales representative.

General Information

Reliability

The failure rate (λ) and mean time between failures (MTBF= 1/ λ) is calculated at max output power and an operating ambient temperature (T_A) of +40°C. Ericsson Power Modules uses Telcordia SR-332 Issue 2 Method 1 to calculate the mean steady-state failure rate and standard deviation (σ).

Telcordia SR-332 Issue 2 also provides techniques to estimate the upper confidence levels of failure rates based on the mean and standard deviation.

Mean steady-state failure rate, λ	Std. deviation, σ
394 nFailures/h	61 nFailures/h

MTBF (mean value) for the BMR453 series = 3 Mh. MTBF at 90% confidence level = 2.1 Mh

Compatibility with RoHS requirements

The products are compatible with the relevant clauses and requirements of the RoHS directive 2002/95/EC and have a maximum concentration value of 0.1% by weight in homogeneous materials for lead, mercury, hexavalent chromium, PBB and PBDE and of 0.01% by weight in homogeneous materials for cadmium.

Exemptions in the RoHS directive utilized in Ericsson Power Modules products are found in the Statement of Compliance document.

Ericsson Power Modules fulfills and will continuously fulfill all its obligations under regulation (EC) No 1907/2006 concerning the registration, evaluation, authorization and restriction of chemicals (REACH) as they enter into force and is through product materials declarations preparing for the obligations to communicate information on substances in the products.

Quality Statement

The products are designed and manufactured in an industrial environment where quality systems and methods like ISO 9000, Six Sigma, and SPC are intensively in use to boost the continuous improvements strategy. Infant mortality or early failures in the products are screened out and they are subjected to an ATE-based final test. Conservative design rules, design reviews and product qualifications, plus the high competence of an engaged work force, contribute to the high quality of the products.

BMR454 series Fully regulated Intermediate Bus Converters	EN/LZT 146 404 R4A February 2011
Input 36-75 V, Output up to 40 A / 240 W	© Ericsson AB

Warranty

Warranty period and conditions are defined in Ericsson Power Modules General Terms and Conditions of Sale.

Limitation of Liability

Ericsson Power Modules does not make any other warranties, expressed or implied including any warranty of merchantability or fitness for a particular purpose (including, but not limited to, use in life support applications, where malfunctions of product can cause injury to a person's health or life).

© Ericsson AB 2010

The information and specifications in this technical specification is believed to be correct at the time of publication. However, no liability is accepted for inaccuracies, printing errors or for any consequences thereof. Ericsson AB reserves the right to change the contents of this technical specification at any time without prior notice.

Safety Specification General information

Ericsson Power Modules DC/DC converters and DC/DC regulators are designed in accordance with safety standards IEC/EN/UL 60950-1 *Safety of Information Technology Equipment.*

IEC/EN/UL 60950-1 contains requirements to prevent injury or damage due to the following hazards:

- Electrical shock
- Energy hazards
- Fire
- Mechanical and heat hazards
- Radiation hazards
- Chemical hazards

On-board DC/DC converters and DC/DC regulators are defined as component power supplies. As components they cannot fully comply with the provisions of any safety requirements without "Conditions of Acceptability". Clearance between conductors and between conductive parts of the component power supply and conductors on the board in the final product must meet the applicable safety requirements. Certain conditions of acceptability apply for component power supplies with limited stand-off (see Mechanical Information for further information). It is the responsibility of the installer to ensure that the final product housing these components complies with the requirements of all applicable safety standards and regulations for the final product.

Component power supplies for general use should comply with the requirements in IEC 60950-1, EN 60950-1 and UL 60950-1 *Safety of Information Technology Equipment.* There are other more product related standards, e.g.

IEEE 802.3 CSMA/CD (Ethernet) Access Method, and ETS-300132-2 Power supply interface at the input to telecommunications equipment, operated by direct current (dc), but all of these standards are based on IEC/EN/UL 60950-1 with regards to safety.

Ericsson Power Modules DC/DC converters and DC/DC regulators are UL 60950-1 recognized and certified in accordance with EN 60950-1.

The flammability rating for all construction parts of the products meet requirements for V-0 class material according to IEC 60695-11-10, *Fire hazard testing, test flames* – 50 W horizontal and vertical flame test methods.

The products should be installed in the end-use equipment, in accordance with the requirements of the ultimate application. Normally the output of the DC/DC converter is considered as SELV (Safety Extra Low Voltage) and the input source must be isolated by minimum Double or Reinforced Insulation from the primary circuit (AC mains) in accordance with IEC/EN/UL 60950-1.

Isolated DC/DC converters

It is recommended that a slow blow fuse is to be used at the input of each DC/DC converter. If an input filter is used in the circuit the fuse should be placed in front of the input filter.

In the rare event of a component problem that imposes a short circuit on the input source, this fuse will provide the following functions:

- Isolate the fault from the input power source so as not to affect the operation of other parts of the system.
- Protect the distribution wiring from excessive current and power loss thus preventing hazardous overheating.

The galvanic isolation is verified in an electric strength test. The test voltage (V_{iso}) between input and output is 1500 Vdc or 2250 Vdc (refer to product specification).

24 V DC systems

The input voltage to the DC/DC converter is SELV (Safety Extra Low Voltage) and the output remains SELV under normal and abnormal operating conditions.

48 and 60 V DC systems

If the input voltage to the DC/DC converter is 75 Vdc or less, then the output remains SELV (Safety Extra Low Voltage) under normal and abnormal operating conditions.

Single fault testing in the input power supply circuit should be performed with the DC/DC converter connected to demonstrate that the input voltage does not exceed 75 Vdc.

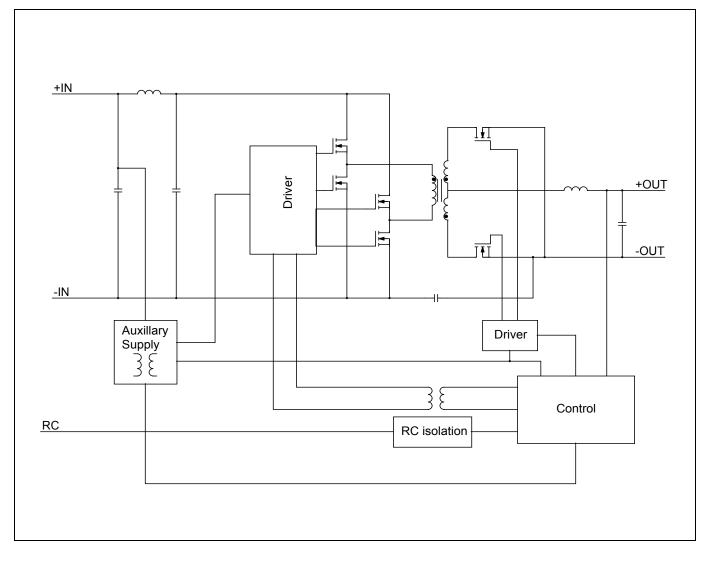
BMR454 series Fully regulated Intermediate Bus Converters	EN/LZT 146 404 R4A February 2011
Input 36-75 V, Output up to 40 A / 240 W	© Ericsson AB

If the input power source circuit is a DC power system, the source may be treated as a TNV-2 circuit and testing has demonstrated compliance with SELV limits in accordance with IEC/EN/UL60950-1.

Non-isolated DC/DC regulators

The input voltage to the DC/DC regulator is SELV (Safety Extra Low Voltage) and the output remains SELV under normal and abnormal operating conditions.

5 **Technical Specification**


BMR454 series Fully regulated Intermediate Bus Converters	EN/LZT 146 404 R4A February 2011
Input 36-75 V, Output up to 40 A / 240 W	© Ericsson AB

Absolute Maximum Ratings

Characteris	tics	min	typ	max	Unit
T _{P1}	Operating Temperature (see Thermal Consideration section)	-40		+125	°C
Ts	Storage temperature	-55		+125	°C
VI	Input voltage	-0.5		80	V
V _{iso}	Isolation voltage (input to output test voltage), see note 1			1500	Vdc
V _{tr}	Input voltage transient (Tp 100 ms)			100	V
V _{RC}	Remote Control pin voltage	-0.3		18	V
V Logic I/O	SALERT, CTRL, SYNC, SCL, SDA, SA(0,1)	-0.3		3.6	V

Stress in excess of Absolute Maximum Ratings may cause permanent damage. Absolute Maximum Ratings, sometimes referred to as no destruction limits, are normally tested with one parameter at a time exceeding the limits of Output data or Electrical Characteristics. If exposed to stress above these limits, function and performance may degrade in an unspecified manner. Note 1: Isolation voltage (input/output to base-plate) max 750Vdc.

Fundamental Circuit Diagram

BMR454 series Fully regulated Intermediate Bus Converters	EN/LZT 146 404 R4A February 2011
Input 36-75 V, Output up to 40 A / 240 W	© Ericsson AB

Functional Description

 T_{P1} = -40 to +90°C, V_{I} = 36 to 75 V, sense pins connected to output pins unless otherwise specified under Conditions. Typical values given at: T_{P1} = +25°C, V_{I} = 53 V, max I_{O} , unless otherwise specified under Conditions Configuration File: 190 10-CDA 102 1900/001 rev A

Characteristics		Conditions	min	typ	max	Unit
PMBus monitoring	accuracy	1				
VIN_READ	Input voltage		-3	+0.4	3	%
VOUT_READ Output voltage		V ₁ = 53 V	-1.0	-0.3	1.0	%
IOUT_READ	Output current	V_{I} = 53 V, 50-100% of max I_{O}	-6	-1.0	6	%
IOUT_READ	Output current	$V_{I} = 53 V$, 10% of max I_{O}	-0.7	-	0.7	А
TEMP_READ	Temperature		-5	-	5	°C
Fault Protection Ch	aracteristics					1
	Factory default		-	33	-	V
Input Under	Setpoint accuracy		-3	-	3	%
Voltage Lockout,		Factory default	-	1.8	-	V
UVLŐ	Hysteresis	Configurable via PMBus of threshold range, Note 1	0	-	-	V
	Delay		-	200	-	μs
		Factory default	-	0	-	V
(Output voltage)	VOUT_UV_FAULT_LIMIT	Configurable via PMBus, Note 1	0	-	16	V
Over/Under Voltage Protection,	VOUT_OV_FAULT_LIMIT	Factory default	-	15.6	-	V
OVP/UVP		Configurable via PMBus, Note 1	V _{OUT}	-	16	V
	fault response time		-	200	-	μs
	Setpoint accuracy	lo	-6		6	%
Over Current Protection,	IOUT_OC_FAULT_LIMIT	Factory default	-	25	-	٨
OCP		Configurable via PMBus, Note 1	0	-	100	A
	fault response time		-	200	-	μS
	OTP_FAULT_LIMIT	Factory default	-	125	-	
Over Temperature		Configurable via PMBus, Note 1	-50		125	°C
Protection, OTP	OTP hysteresis	Factory default		10	405	
OII		Configurable via PMBus, Note 1	0	200	165	
Logic Input/Output	fault response time		-	200	-	μS
Logic input low (V_{IL})	Gilaracteristics		-		0.8	V
		CTRL_CS, SA0, SA1, PG_SYNC, SCL, SDA,	2.0	-	0.8	V
Logic input high (VIH)		CTRL_CS, PG_SYNC, SALERT,	2.0	-	-	V
Logic output low (V_{OL})		SCL, SDA I _{OL} = 5 mA	-	-	0.4	V
Logic output high (V _{OH})		CTRL_CS, PG_SYNC, SALERT, SCL, SDA $I_{OH} = -5 \text{ mA}$	2.8	-	-	V
Setup time, SMBus			100	-		ns
Hold time, SMBus			300	-		ns

Note 1: See Operating Information section.

BMR454 series Fully regulated Intermediate Bus Converters	EN/LZT 146 404 R4A February 2011
Input 36-75 V, Output up to 40 A / 240 W	© Ericsson AB

3.3 V, 40 A / 132 W Electrical Specification

 T_{P1} = -40 to +90°C, V_1 = 36 to 75 V, sense pins connected to output pins unless otherwise specified under Conditions. Typical values given at: T_{P1} = +25°C, V_I = 53 V_1 max I_0 , unless otherwise specified under Conditions. Additional C_{out} = 0.1 mF, Configuration File: 190 10-CDA 102 1900/003 rev A

Chara	cteristics	Conditions	min	typ	max	Unit
Vı	Input voltage range		36		75	V
V _{loff}	Turn-off input voltage	Decreasing input voltage	32	33	34	V
Vlon	Turn-on input voltage	Increasing input voltage	34	35	36	V
Cı	Internal input capacitance			11		μF
Po	Output power		0		132	W
	Efficiency	50 % of max I _o		93		
n		max I _o		91.2		%
η		50 % of max I _o , V _I = 48 V		93.2		
		max I ₀ , V ₁ = 48 V		91.2		
P _d	Power Dissipation	max I _o		12.8	17.5	W
Pli	Input idling power	I ₀ = 0 A, V ₁ = 53 V		2.0		W
P _{RC}	Input standby power	V ₁ = 53 V (turned off with RC)		127		mW
f _s	Switching frequency	0-100 % of max $I_{\rm O}$ see Note 1	171	180	189	kHz

V _{Oi}	Output voltage initial setting and accuracy	T _{P1} = +25°C, V ₁ = 53 V, I ₀ = 40 A	3.26	3.3	3.34	V
	Output adjust range	See operating information	3.0		6.7	V
V	Output voltage tolerance band	0-100 % of max I ₀	3.22		3.38	V
Vo	Line regulation	max I _o		5	20	mV
	Load regulation	$V_{\rm I}$ = 53 V, 0-100 % of max $I_{\rm O}$		6	16	mV
V _{tr}	Load transient voltage deviation	V ₁ = 53 V, Load step 25-75-25 % of max I ₀ , di/dt = 1 A/µs		±0.2		V
t _{tr}	Load transient recovery time	see Note 2		214		μs
t _r	Ramp-up time (from 10-90 % of V _{Oi})	10-100% of max I _{o,} T _{P1} = 25℃, V _I = 53 V		8		ms
ts	Start-up time (from V_i connection to 90 % of V_{Oi})	see Note 3		140		ms
t,	V _I shut-down fall time	max I _o		0.33		ms
4	(from V_1 off to 10 % of V_0)	$I_{O} = 0 A$		3.8		S
	RC start-up time	max I _o		54		ms
t _{RC}	RC shut-down fall time (from RC off to 10 % of V_0)	max I _o		2		ms
		I _O = 0 A		3.8		S
lo	Output current		0		40	А
l _{lim}	Current limit threshold	$V_{\rm O}$ = 3.0V, $T_{\rm P1}$ < max $T_{\rm ref}$	41	45	49	А
I _{sc}	Short circuit current	T_{P1} = 25°C, V_{O} < 0.2V, see Note 4		7	8	Α
Cout	Recommended Capacitive Load	T _{P1} = 25°C, see Note 5	0.1	4	6	mF
V_{Oac}	Output ripple & noise	See ripple & noise section, max I_0, V_{0i}		25	50	mVp-p
OVP	Over voltage protection	T _{P1} = +25°C, V _I = 53 V, 10-100 % of max I _o , see Note 6		4.6		V

Note 1: Frequency may be adjusted via PMBus, see Operating Information section.

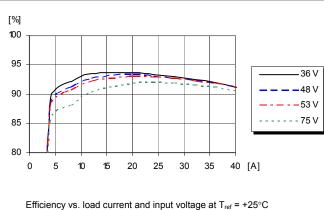
Note 2: Cout = 4mF used at load transient test.

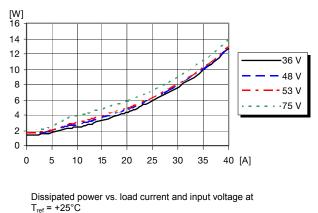
Note 3: Start-up and Ramp-up time can be increased via PMBus, see Operation Information section.

Note 4: RMS current in hiccup mode.

Note 5: Low ESR-value.

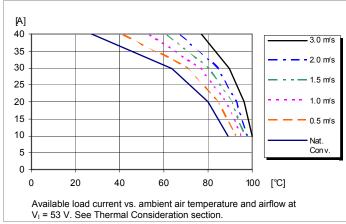
Note 6: OVP-level can be adjusted via PMBus, see Operation Information.

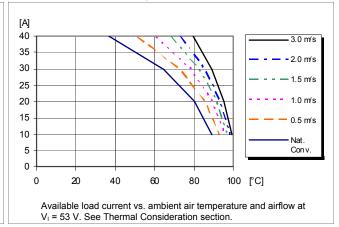

BMR 454 0002/003


8 **Technical Specification**

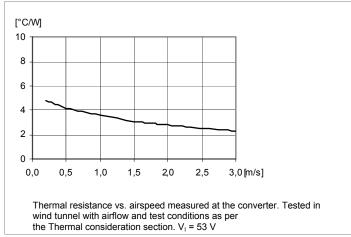
BMR454 series Fully regulated Intermediate Bus Converters	EN/LZT 146 404 R4A February 2011
Input 36-75 V, Output up to 40 A / 240 W	© Ericsson AB

3.3 V, 40 A / 132 W Electrical Specification


Efficiency



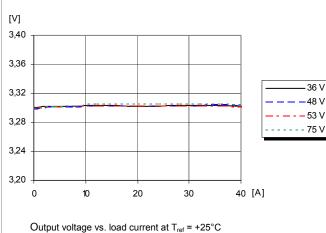
Power Dissipation


Output Current Derating, open frame

Output Current Derating, base plate option

Thermal Resistance, base plate option

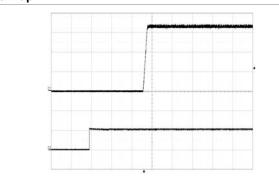
BMR 454 0002/003


Technical Specification 9

BMR454 series Fully regulated Intermediate Bus Converters	EN/LZT 146 404 R4A February 2011
Input 36-75 V, Output up to 40 A / 240 W	© Ericsson AB

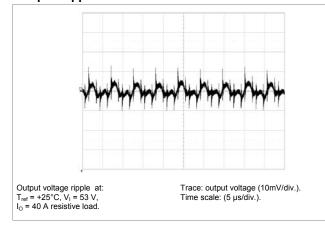
3.3 V, 40 A / 132 W Electrical Specification

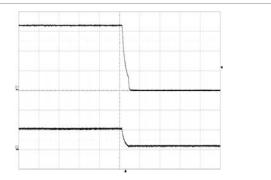
BMR 454 0002/003



[V] 4,00 3,00 N, 36 V ١, 48 V 2,00 <u>,</u>†, **-** 53 V 1F ---75V ٠. 1,00 L) 0,00 50 [A] 40 42 44 46 48 Output voltage vs. load current at $I_0 > max I_0$, $T_{ref} = +25^{\circ}C$

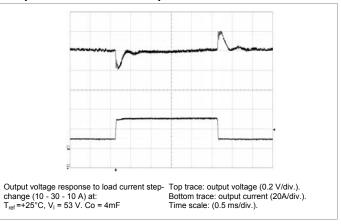
Current Limit Characteristics


Start-up


Start-up enabled by connecting V_I at: T_{ref} = +25°C, V_I = 53 V, I_O = 40 A resistive load.

Top trace: output voltage (1 V/div.). Bottom trace: input voltage (50 V/div.). Time scale: (50 ms/div.).

Output Ripple & Noise


Shut-down

Shut-down enabled by disconnecting V_I at: T_{ref} = +25°C, V_I = 53 V, I_O =40 A resistive load.

Top trace: output voltage (2 V/div.). Bottom trace: input voltage (50 V/div.). Time scale: (0.5 ms/div.).

Output Load Transient Response

WR454 series Fully regulated Intermediate Bus Converters EN/LZT 146 404 R4A February 2011 put 36-75 V, Output up to 40 A / 240 W © Ericsson AB	
Input 36-75 V, Output up to 40 A / 240 W	© Ericsson AB

5 V, 38 A / 190 W Electrical Specification

 T_{P1} = -40 to +90°C, V_I = 36 to 75 V, sense pins connected to output pins unless otherwise specified under Conditions. Typical values given at: T_{P1} = +25°C, V_I = 53 V_I max I_O , unless otherwise specified under Conditions. Additional C_{out} = 0.1 mF, Configuration File: 190 10-CDA 102 1900/004 rev A

Chara	cteristics	Conditions	min	typ	max	Unit
VI	Input voltage range		36		75	V
V _{loff}	Turn-off input voltage	Decreasing input voltage	32	33	34	V
Vlon	Turn-on input voltage	Increasing input voltage	34	35	36	V
Cı	Internal input capacitance			11		μF
Po	Output power		0		190	W
	Efficiency	50 % of max I _o		94.3		
n		max I _o		93.3		%
1		50 % of max I_0 , V_1 = 48 V		94.5		
		max I _o , V _I = 48 V		93.3		
P _d	Power Dissipation	max I _o		13.7	19.1	W
Pli	Input idling power	I ₀ = 0 A, V ₁ = 53 V		2.6		W
P _{RC}	Input standby power	V ₁ = 53 V (turned off with RC)		123		mW
f _s	Switching frequency	0-100 % of max I _o see Note 1	171	180	189	kHz

V _{Oi}	Output voltage initial setting and accuracy	T _{P1} = +25°C, V _I = 53 V, I _O = 38 A	4.95	5.0	5.05	V
	Output adjust range	See operating information	3.0		6.7	V
V	Output voltage tolerance band	0-100 % of max I ₀	4.9		5.1	V
Vo	Line regulation	max I _o		5	21	mV
	Load regulation	$V_{\rm I}$ = 53 V, 0-100 % of max $I_{\rm O}$		5	18	mV
V _{tr}	Load transient voltage deviation	V ₁ = 53 V, Load step 25-75-25 % of max I ₀ , di/dt = 1 A/µs		±0.2		V
t _{tr}	Load transient recovery time	see Note 2		250		μs
t,	Ramp-up time (from 10–90 % of V _{Oi})	10-100% of max I _{o,} T _{P1} = 25℃, V _I = 53 V		8		ms
ts	Start-up time (from V_i connection to 90 % of V_{Oi})	see Note 3		140		ms
t _f	V _I shut-down fall time	max I _o		0.4		ms
4	(from V_1 off to 10 % of V_0)	$I_{O} = 0 A$		3.7		S
	RC start-up time	max I _o		55		ms
t _{RC}	RC shut-down fall time (from RC off to 10 % of V_0)	max I _o		3		ms
		I ₀ = 0 A		3.7		S
lo	Output current		0		38	А
l _{lim}	Current limit threshold	$V_{\rm O}$ = 4.5V, $T_{\rm P1}$ < max $T_{\rm ref}$	41	45	49	А
I _{sc}	Short circuit current	T_{P1} = 25°C, V_0 < 0.2V, see Note 4		7	8	А
Cout	Recommended Capacitive Load	T _{P1} = 25°C, see Note 5	0.1	3.8	6	mF
V _{Oac}	Output ripple & noise	See ripple & noise section, max I_0, V_{0i}		35	75	mVp-p
OVP	Over voltage protection	T_{P1} = +25°C, V _I = 53 V, 10-100 % of max I ₀ , see Note 6		6.8		V

Note 1: Frequency may be adjusted via PMBus, see Operating Information section.

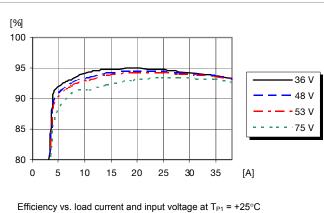
Note 2: Cout = 3.8mF used at load transient test.

Note 3: Start-up and Ramp-up time can be increased via PMBus, see Operation Information section.

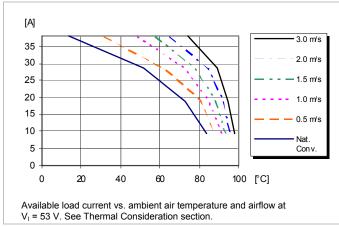
Note 4: RMS current in hiccup mode.

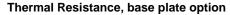
Note 5: Low ESR-value.

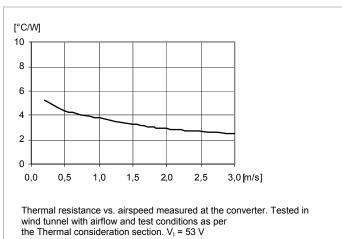
Note 6: OVP-level can be adjusted via PMBus, see Operation Information.

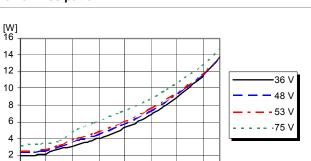

BMR 454 0002/004

Technical Specification 11

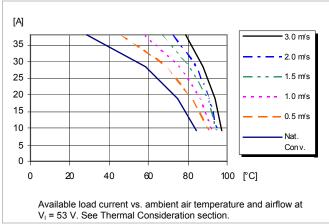

BMR454 series Fully regulated Intermediate Bus Converters	EN/LZT 146 404 R4A February 2011
Input 36-75 V, Output up to 40 A / 240 W	© Ericsson AB


5 V, 38 A / 190 W Electrical Specification


Efficiency



Output Current Derating, open frame



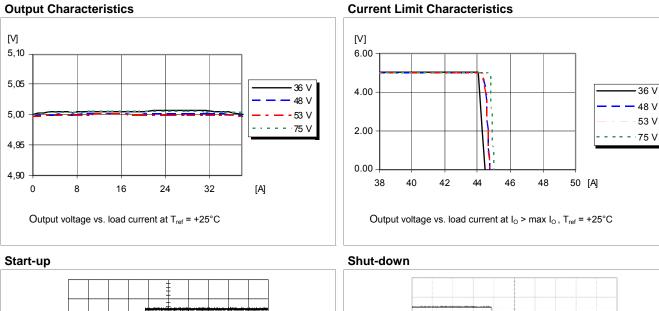
Power Dissipation

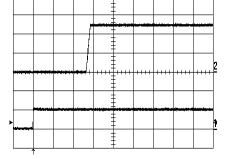
0

0 5 10 15 20 25 30 35 [A] Dissipated power vs. load current and input voltage at $T_{P1} = +25^{\circ}C$

Output Current Derating, base plate option

BMR 454 0002/004

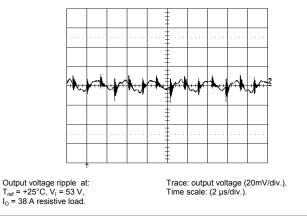

ERICSSON 📕

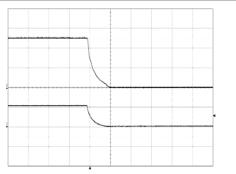

Technical Specification 12

BMR454 series Fully regulated Intermediate Bus Converters	EN/LZT 146 404 R4A February 2011
Input 36-75 V, Output up to 40 A / 240 W	© Ericsson AB

5 V, 38 A / 190 W Electrical Specification

BMR 454 0002/004

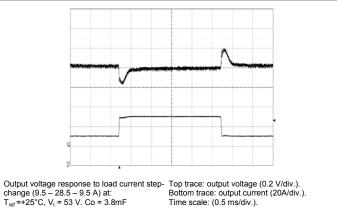



Top trace: output voltage (2 V/div.).

Bottom trace: input voltage (50 V/div.). Time scale: (20 ms/div.).

 $\begin{array}{l} \mbox{Start-up enabled by connecting V_1 at:} \\ \mbox{T_{ref}} = +25^\circ C, V_1 = 53 $V, $\\ \mbox{$I_0$} = 38 A resistive load. \\ \end{array}$

Output Ripple & Noise



Shut-down enabled by disconnecting V_I at: T_{ref} = +25°C, V_I = 53 V, I_O =38 A resistive load.

Top trace: output voltage (2 V/div.). Bottom trace: input voltage (50 V/div.). Time scale: (0.2 ms/div.).

Output Load Transient Response

BMR454 series Fully regulated Intermediate Bus Converters	EN/LZT 146 404 R4A February 2011
Input 36-75 V, Output up to 40 A / 240 W	© Ericsson AB

9 V, 20 A / 180 W Electrical Specification

 T_{P1} = -40 to +90°C, V_I = 36 to 75 V, sense pins connected to output pins unless otherwise specified under Conditions. Typical values given at: T_{P1} = +25°C, V_I = 53 V_I max I_O , unless otherwise specified under Conditions. Additional C_{out} = 0.1 mF, Configuration File: 190 10-CDA 102 1900/002 rev A

Chara	cteristics	Conditions	min	typ	max	Unit
Vı	Input voltage range		36		75	V
V _{loff}	Turn-off input voltage	Decreasing input voltage	32	33	34	V
Vlon	Turn-on input voltage	Increasing input voltage	34	35	36	V
Cı	Internal input capacitance			11		μF
Po	Output power		0		180	W
	Efficiency	50 % of max I _o		95		
n		max I _o		94		%
η		50 % of max I _o , V _I = 48 V		95		
		max I _o , V _I = 48 V		94		
P _d	Power Dissipation	max I _o		11.1	14.7	W
Pli	Input idling power	I ₀ = 0 A, V ₁ = 53 V		2.2		W
P _{RC}	Input standby power	V ₁ = 53 V (turned off with RC)		182		mW
f _s	Switching frequency	0-100 % of max I _o see Note 1	171	180	189	kHz

V _{Oi}	Output voltage initial setting and accuracy	T _{P1} = +25°C, V _I = 53 V, I _O = 20 A	8.90	9.0	9.10	V
	Output adjust range	See operating information	8.1		13.2	V
V	Output voltage tolerance band	0-100 % of max I ₀	8.82		9.18	V
Vo	Line regulation	max I _o		8	45	mV
	Load regulation	$V_{\rm I}$ = 53 V, 0-100 % of max $I_{\rm O}$		8	30	mV
V _{tr}	Load transient voltage deviation	V ₁ = 53 V, Load step 25-75-25 % of max I ₀ , di/dt = 1 A/µs		±0.3		V
t _{tr}	Load transient recovery time	see Note 2		250		μs
t,	Ramp-up time (from 10-90 % of V _{Oi})	10-100% of max I _{o,} T _{P1} = 25°C, V _I = 53 V		10		ms
ts	Start-up time (from V_i connection to 90 % of V_{Oi})	see Note 3		140		ms
t _f	V _I shut-down fall time	max I _o		0.4		mS
4	(from V_1 off to 10 % of V_0)	$I_{O} = 0 A$		5		S
	RC start-up time	max I _o		54		ms
t _{RC}	RC shut-down fall time	max I _o		3		ms
	(from RC off to 10 % of $V_{\rm O})$	I ₀ = 0 A		5		S
lo	Output current		0		20	А
l _{lim}	Current limit threshold	$V_{\rm O}$ = 8.1V, $T_{\rm P1}$ < max $T_{\rm ref}$	21	25	28	А
I _{sc}	Short circuit current	T_{P1} = 25°C, V ₀ < 0.2V, see Note 4		4	5	Α
Cout	Recommended Capacitive Load	T _{P1} = 25°C, see Note 5	0.1	2.2	6	mF
V_{Oac}	Output ripple & noise	See ripple & noise section, max I_0, V_{0i}		60	120	mVp-p
OVP	Over voltage protection	T_{P1} = +25°C, V ₁ = 53 V, 10-100 % of max I ₀ , see Note 6		15.6		V

Note 1: Frequency may be adjusted via PMBus, see Operating Information section.

Note 2: Cout = 3.3mF used at load transient test.

Note 3: Start-up and Ramp-up time can be increased via PMBus, see Operation Information section.

Note 4: RMS current in hiccup mode.

Note 5: Low ESR-value.

Note 6: OVP-level can be adjusted via PMBus, see Operation Information.

BMR 454 0000/002

Technical Specification 14

BMR454 series Fully regulated Intermediate Bus Converters	EN/LZT 146 404 R4A February 2011	
Input 36-75 V, Output up to 40 A / 240 W	© Ericsson AB	

Power Dissipation

5

[W] 14

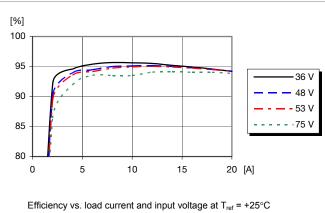
12

10

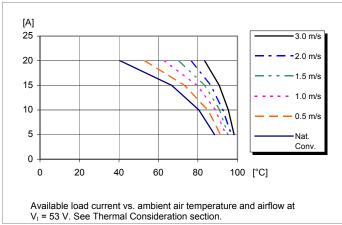
8

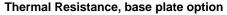
6

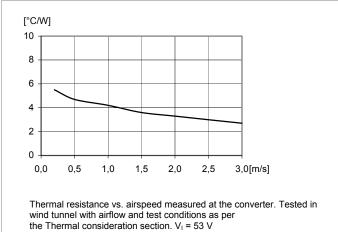
4


2

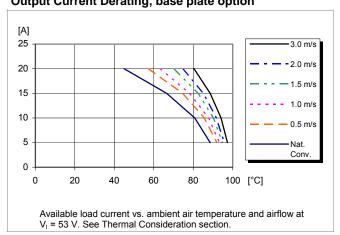
0


0


9 V, 20 A / 180 W Electrical Specification


Efficiency

Output Current Derating, open frame



10

Dissipated power vs. load current and input voltage at T_{ref} = +25 $^{\circ}\text{C}$

15

20 [A]

BMR 454 0000/002

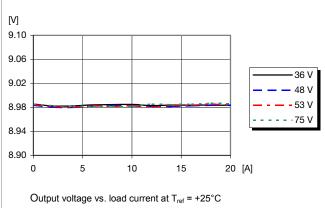
36 V

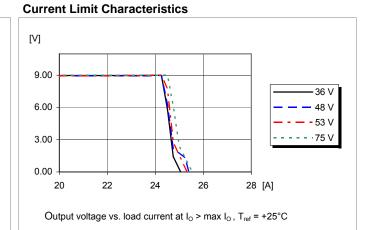
48 V

53 V

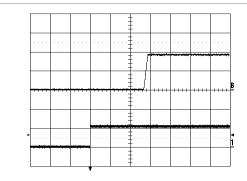
- ·75 V

ERICSSON 🗲

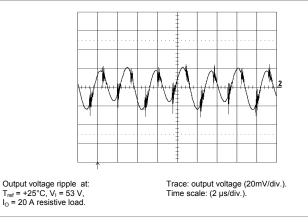

Technical Specification 15

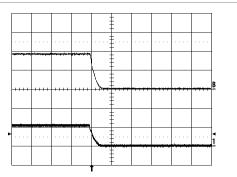

BMR454 series Fully regulated Intermediate Bus Converters	EN/LZT 146 404 R4A February 2011
Input 36-75 V, Output up to 40 A / 240 W	© Ericsson AB

9 V, 20 A / 180 W Electrical Specification


BMR 454 0000/002

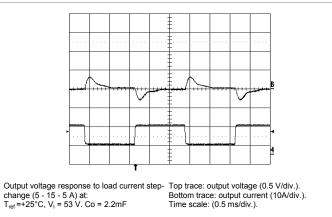
Output Characteristics


Start-up


Start-up enabled by connecting V_I at: $T_{ref} = +25^{\circ}C$, $V_1 = 53 V$, $I_0 = 20 A$ resistive load.

Top trace: output voltage (5 V/div.). Bottom trace: input voltage (50 V/div.). Time scale: (50 ms/div.).

Output Ripple & Noise


Shut-down

Shut-down enabled by disconnecting V_I at: $T_{ref} = +25^{\circ}C$, $V_{I} = 53 V$, $I_{O} = 20 A$ resistive load.

Top trace: output voltage (5 V/div.). Bottom trace: input voltage (50 V/div.). Time scale: (0.5 ms/div.).

Output Load Transient Response

BMR454 series Fully regulated Intermediate Bus Converters	EN/LZT 146 404 R4A February 2011
Input 36-75 V, Output up to 40 A / 240 W	© Ericsson AB

12 V, 20 A / 240 W Electrical Specification

 T_{P1} = -40 to +90°C, V_I = 36 to 75 V, sense pins connected to output pins unless otherwise specified under Conditions. Typical values given at: T_{P1} = +25°C, V_I= 53 V_I max I₀, unless otherwise specified under Conditions. Additional C_{out} = 0.1 mF, Configuration File: 190 10-CDA 102 1900/001 rev A

Characteristics		Conditions	min	typ	max	Unit
VI	Input voltage range		36		75	V
V_{loff}	Turn-off input voltage	Decreasing input voltage	32	33	34	V
V_{lon}	Turn-on input voltage	Increasing input voltage	34	35	36	V
Cı	Internal input capacitance			11		μF
Po	Output power		0		240	W
	Efficiency	50 % of max I _o		95.6		%
		max I _o		95.0		
1		50 % of max I_0 , V_1 = 48 V		95.7		
		max I ₀ , V ₁ = 48 V		95.0		
P_{d}	Power Dissipation	max I _o		12.7	17.1	W
Pli	Input idling power	I ₀ = 0 A, V ₁ = 53 V		2.7		W
P_{RC}	Input standby power	V ₁ = 53 V (turned off with RC)		184		mW
fs	Switching frequency	0-100 % of max I ₀ see Note 2	171	180	189	kHz

V _{Oi}	Output voltage initial setting and accuracy	T _{P1} = +25°C, V ₁ = 53 V, I ₀ = 20 A	11.88	12.0	12.12	V
	Output adjust range	See operating information	8.1		13.2	V
	Output voltage tolerance band	0-100 % of max I _o , see Note 1	11.76		12.24	V
Vo	Line regulation	max I _o , see Note 1		20	80	mV
	Load regulation	V _I = 53 V, 0-100 % of max I ₀ , see Note 1		6	45	mV
V _{tr}	Load transient voltage deviation	V ₁ = 53 V, Load step 25-75-25 % of max I _o , di/dt = 1 A/µs		±0.3		V
t _{tr}	Load transient recovery time	see Note 3		250		μs
tr	Ramp-up time (from 10-90 % of V _{Oi})	10-100% of max I _{o,} T _{P1} = 25°C, V ₁ = 53 V		8		ms
ts	Start-up time (from V _i connection to 90 % of V _{Oi})	see Note 4		140		ms
t _f	V _I shut-down fall time	max I _o		0.4		ms
4	(from V_1 off to 10 % of V_0)	$I_{O} = 0 A$		5		S
	RC start-up time	max I _o		55		ms
t _{RC}	RC shut-down fall time	max I _o		2.4		ms
	(from RC off to 10 % of $V_{\rm O}$)	I _O = 0 A		5		S
lo	Output current		0		20	А
l lim	Current limit threshold	V_{O} = 10.8 V , T_{P1} < max T_{ref}	21	25	28	А
I _{sc}	Short circuit current	T _{P1} = 25°C, see Note 5		4	5	А
C _{out}	Recommended Capacitive Load	T _{P1} = 25°C, see Note 6	0.1	2.2	6	mF
V _{Oac}	Output ripple & noise	See ripple & noise section, max I _o , see Note 1		60	120	mVp-p
OVP	Over voltage protection	T _{P1} = +25°C, V _I = 53 V, 10-100 % of max I _O , see Note 7		15.6		V

Note 1: Vin = 40-75V

Note 2: Frequency may be adjusted with PMBus communication. See Operating Information section

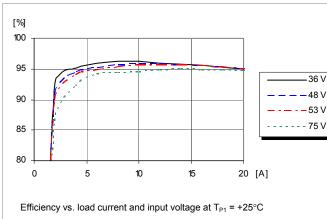
Note 3: Cout = 2.2mF used at load transient test.

Note 4: Start-up and Ramp-up time can be increased via PMBus, see Operation Information section.

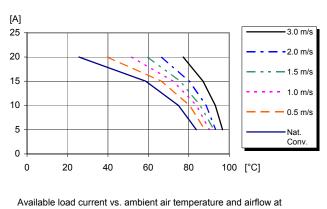
Note 5: OCP in hic-up mode

Note 6: Low ESR-value

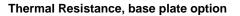
Note 7: OVP-level can be adjusted via PMBus, see Operation Information.

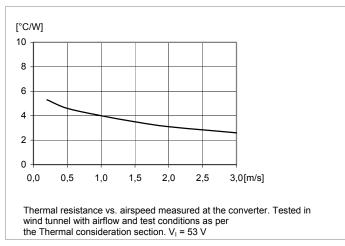

BMR 454 0000/001

Technical Specification 17

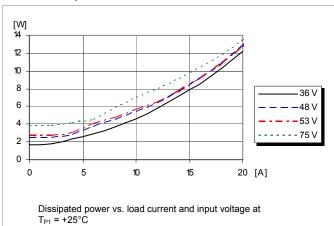

BMR454 series Fully regulated Intermediate Bus Converters	EN/LZT 146 404 R4A February 2011	
Input 36-75 V, Output up to 40 A / 240 W	© Ericsson AB	

12 V, 20 A / 240 W Typical Characteristics

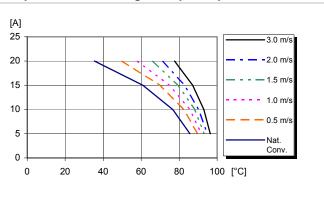

Efficiency



Output Current Derating, open frame



Available load current vs. ambient air temperature and airflow at V_I = 53 V. See Thermal Consideration section.



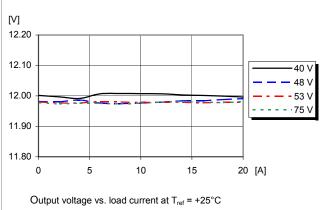
Power Dissipation

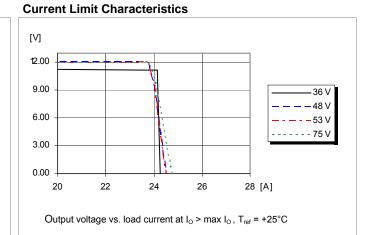
Output Current Derating, base plate option

Available load current vs. ambient air temperature and airflow at $V_1 = 53$ V. See Thermal Consideration section.

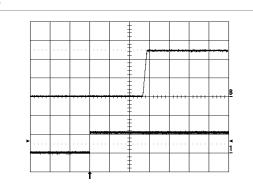
BMR 454 0000/001

ERICSSON 💋


Technical Specification 18

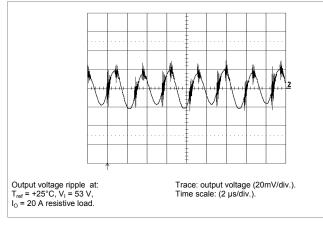

BMR454 series Fully regulated Intermediate Bus Converters	EN/LZT 146 404 R4A February 2011
Input 36-75 V, Output up to 40 A / 240 W	© Ericsson AB

12 V, 20 A / 240 W Electrical Specification

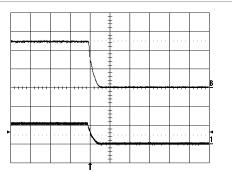

BMR 454 0000/001

Output Characteristics

Start-up



Top trace: output voltage (5 V/div.).


Bottom trace: input voltage (50 V/div.). Time scale: (50 ms/div.).

Start-up enabled by connecting V₁ at: $T_{ref} = +25^{\circ}C$, $V_1 = 53 V$, $I_0 = 20 A$ resistive load.

Output Ripple & Noise

Shut-down

Shut-down enabled by disconnecting V₁ at: $T_{ref} = +25^{\circ}C$, $V_1 = 53 V$, $I_0 = 20 A$ resistive load.

Top trace: output voltage (5 V/div.). Bottom trace: input voltage (50 V/div.). Time scale: (0.5 ms/div.).

Output Load Transient Response

BMR454 series Fully regulated Intermediate Bus Converters	EN/LZT 146 404 R4A February 2011
Input 36-75 V, Output up to 40 A / 240 W	© Ericsson AB

12 V, 20 A / 240 W Electrical Specification

 T_{P1} = -40 to +90°C, V_1 = 36 to 75 V, sense pins connected to output pins unless otherwise specified under Conditions. Typical values given at: T_{P1} = +25°C, V_1 = 53 V_1 max I_0 , unless otherwise specified under Conditions. Additional C_{out} = 0.1 mF, Configuration File: 190 10-CDA 102 1900/005 rev A

Characteristics		Conditions	min	typ	max	Unit
VI	Input voltage range		36		75	V
V_{loff}	Turn-off input voltage	Decreasing input voltage	32	33	34	V
Vlon	Turn-on input voltage	Increasing input voltage	34	35	36	V
Cı	Internal input capacitance			11		μF
Po	Output power		0		240	W
	Efficiency	50 % of max I _o		94.8		%
		max I _o		94.9		
II.		50 % of max I _o , V _I = 48 V		95.1		
		max I ₀ , V ₁ = 48 V		94.9		
P _d	Power Dissipation	max I _o		13.0	17.8	W
Pli	Input idling power	I ₀ = 0 A, V ₁ = 53 V		3.1		W
P _{RC}	Input standby power	V ₁ = 53 V (turned off with RC)		123		mW
f _s	Switching frequency	0-100 % of max I _o see Note 2	171	180	189	kHz

V _{Oi}	Output voltage initial setting and accuracy	T _{P1} = +25°C, V _I = 53 V, I _O = 20 A	11.88	12.0	12.12	V
	Output adjust range	See operating information and Note 1	8.1		13.2	V
Vo	Output voltage tolerance band	0-100 % of max I ₀	11.76		12.24	V
0	Line regulation	max I _o		22	80	mV
	Load regulation	$V_{\rm I}$ = 53 V, 0-100 % of max $I_{\rm O}$		15	57	mV
V _{tr}	Load transient voltage deviation	V ₁ = 53 V, Load step 25-75-25 % of max I _o , di/dt = 1 A/µs		±0.3		V
t _{tr}	Load transient recovery time	see Note 3		250		μs
tr	Ramp-up time (from 10-90 % of V _{Oi})	10-100% of max I _{o,} T _{P1} = 25°C, V ₁ = 53 V		8		ms
ts	Start-up time (from V_i connection to 90 % of V_{Oi})	see Note 4		140		ms
t _f	V _I shut-down fall time	max I _o		0.4		mS
4	(from V_1 off to 10 % of V_0)	$I_{O} = 0 A$		5		S
	RC start-up time	max I _o		55		ms
t _{RC}	RC shut-down fall time	max I _o		2.4		ms
	(from RC off to 10 % of V_0)	I _O = 0 A		5		s
lo	Output current		0		20	А
l _{lim}	Current limit threshold	$V_{\rm O}$ = 10.8 V , $T_{\rm P1}$ < max $T_{\rm ref}$	21	25	28	А
l _{sc}	Short circuit current	T _{P1} = 25°C, see Note 5		4	5	А
Cout	Recommended Capacitive Load	T _{P1} = 25°C, see Note 6	0.1	2.2	6	mF
V_{Oac}	Output ripple & noise	See ripple & noise section, max $I_{\rm O}$		60	120	mVp-p
OVP	Over voltage protection	T_{P1} = +25°C, V ₁ = 53 V, 10-100 % of max I ₀ , see Note 7		15.6		V

Note 1: For output voltage below 11V, the BMR 454 0000/XXX is recommended for better efficiency and thermal performance.

Note 2: Frequency may be adjusted with PMBus communication. See Operating Information section

Note 3: Cout = 2.2mF used at load transient test.

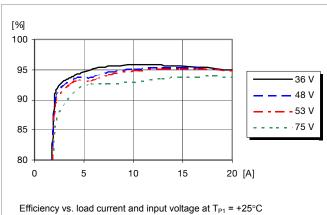
Note 4: Start-up and Ramp-up time can be increased via PMBus, see Operation Information section.

Note 5: OCP in hic-up mode

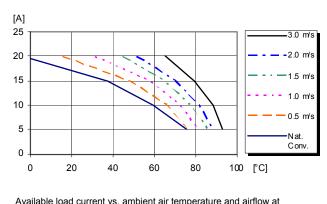
Note 6: Low ESR-value

Note 7: OVP-level can be adjusted via PMBus, see Operation Information.

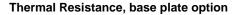
BMR 454 0004/005


Technical Specification 20

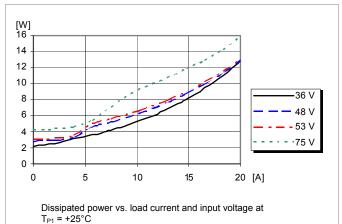
BMR 454 0004/005


BMR454 series Fully regulated Intermediate Bus Converters	EN/LZT 146 404 R4A February 2011
Input 36-75 V, Output up to 40 A / 240 W	© Ericsson AB

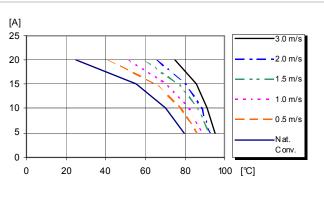
12 V, 20 A / 240 W Typical Characteristics


Efficiency

Output Current Derating, open frame



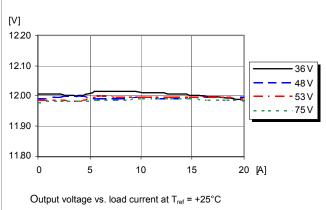
Available load current vs. ambient air temperature and airflow at V_I = 53 V. See Thermal Consideration section.

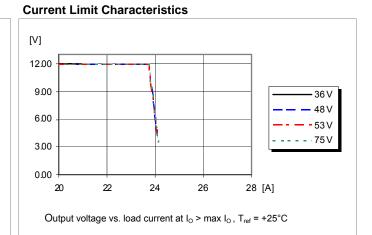


Power Dissipation

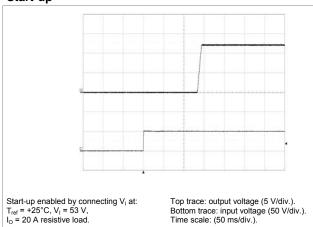
Output Current Derating, base plate option

Available load current vs. ambient air temperature and airflow at $V_1 = 53$ V. See Thermal Consideration section.

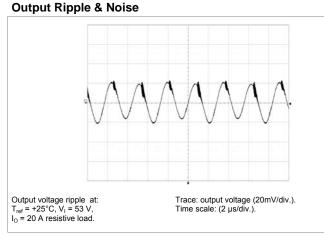

Technical Specification 21

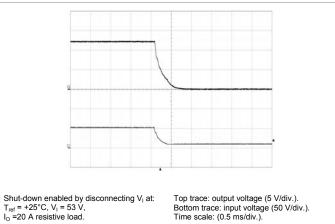

BMR454 series Fully regulated Intermediate Bus Converters	EN/LZT 146 404 R4A February 2011
Input 36-75 V, Output up to 40 A / 240 W	© Ericsson AB

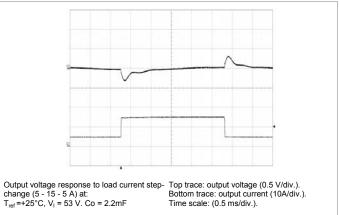
12 V, 20 A / 240 W Electrical Specification


BMR 454 0004/005

Output Characteristics




Start-up


Outrout Dimete & Main

Shut-down

Output Load Transient Response

BMR454 series Fully regulated Intermediate Bus Converters	EN/LZT 146 404 R4A February 2011
Input 36-75 V, Output up to 40 A / 240 W	© Ericsson AB

8.1 V, 20 A / 162 W Electrical Specification

 T_{P1} = -40 to +90°C, V_I = 36 to 75 V, sense pins connected to output pins unless otherwise specified under Conditions. Typical values given at: T_{P1} = +25°C, V_I = 53 V_I max I_O , unless otherwise specified under Conditions. Additional C_{out} = 0.1 mF, Configuration File: 190 10-CDA 102 1900/006 rev A

Chara	cteristics	Conditions	min	typ	max	Unit
Vı	Input voltage range		36		75	V
V _{loff}	Turn-off input voltage	Decreasing input voltage	32	33	34	V
V _{Ion}	Turn-on input voltage	Increasing input voltage	34	35	36	V
Cı	Internal input capacitance			11		μF
Po	Output power		0		162	W
		50 % of max I _o		94.5		%
n	ך Efficiency	max I _o		93.5		
η		50 % of max I _o , V _I = 48 V		94.4		
		max I _O , V _I = 48 V 93	93.4		1	
Pd	Power Dissipation	max I _o		11.4	14.7	W
Pli	Input idling power	I ₀ = 0 A, V ₁ = 53 V		2.2		W
P _{RC}	Input standby power	V ₁ = 53 V (turned off with RC)		161		mW
f _s	Switching frequency	0-100 % of max I _o see Note 1	171	180	189	kHz

V _{Oi}	Output voltage initial setting and accuracy	T _{P1} = +25°C, V ₁ = 53 V, I ₀ = 20 A	8.02	8.10	8.18	V
	Output adjust range	See operating information	8.1		13.2	V
	Output voltage tolerance band	0-100 % of max I ₀	7.94		8.26	V
Vo	Line regulation	max I _o		7	45	mV
	Load regulation	V_1 = 53 V, 0-100 % of max I_0		8.8	20	mV
V _{tr}	Load transient voltage deviation	V ₁ = 53 V, Load step 25-75-25 % of max I ₀ , di/dt = 1 A/µs		±0.3		V
t _{tr}	Load transient recovery time	see Note 2		250		μs
t _r	Ramp-up time (from 10-90 % of V _{Oi})	10-100% of max I _{o,} T _{P1} = 25°C, V ₁ = 53 V		10		ms
ts	Start-up time (from V_i connection to 90 % of V_{Oi})	see Note 3		140		ms
t,	V _I shut-down fall time	max I _o		0.4		mS
4	(from V_1 off to 10 % of V_0)	$I_{O} = 0 A$		5		S
	RC start-up time	max I _o		54		ms
t _{RC}	RC shut-down fall time	max I _o		2.4		ms
	(from RC off to 10 % of $V_{\rm O})$	I _O = 0 A		5		S
lo	Output current		0		20	А
l _{lim}	Current limit threshold	$V_{\rm O}$ = 7.94V, $T_{\rm P1}$ < max $T_{\rm ref}$	21	25	28	А
I _{sc}	Short circuit current	T_{P1} = 25°C, V_0 < 0.2V, see Note 4		4	5	А
Cout	Recommended Capacitive Load	T _{P1} = 25°C, see Note 5	0.1	2.2	6	mF
V_{Oac}	Output ripple & noise	See ripple & noise section, max I_0, V_{0i}		60	120	mVp-p
OVP	Over voltage protection	T _{P1} = +25°C, V _I = 53 V, 10-100 % of max I _o , see Note 6	15.6			V

Note 1: Frequency may be adjusted via PMBus, see Operating Information section.

Note 2: Cout = 3.3mF used at load transient test.

Note 3: Start-up and Ramp-up time can be increased via PMBus, see Operation Information section.

Note 4: RMS current in hiccup mode.

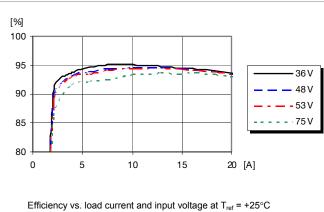
Note 5: Low ESR-value.

Note 6: OVP-level can be adjusted via PMBus, see Operation Information.

BMR 454 0000/006

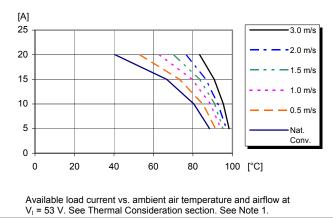
ERICSSON 💋

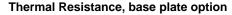
Technical Specification 23

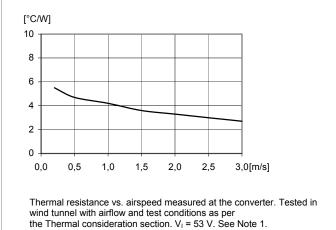

BMR 454 0000/006

BMR454 series Fully regulated Intermediate Bus Converters	EN/LZT 146 404 R4A February 2011
Input 36-75 V, Output up to 40 A / 240 W	© Ericsson AB

Power Dissipation

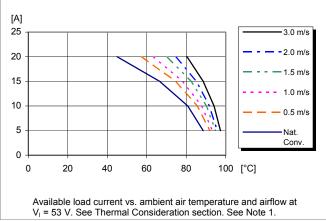

8.1 V, 20 A / 162 W Electrical Specification


Efficiency



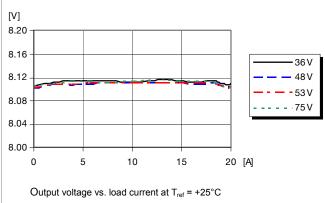
[W] 14 12 36 V 10 48 V 8 53 V 6 75 V 4 2 0 5 10 15 20 [A] 0 Dissipated power vs. load current and input voltage at T_{ref} = +25 $^{\circ}\text{C}$

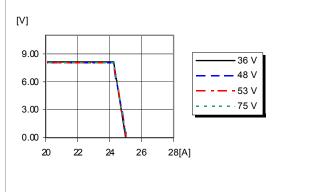
Output Current Derating, open frame



Note 1: Use 9V curve as a reference.

Output Current Derating, base plate option

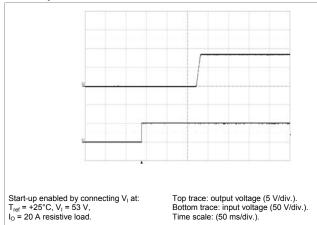

Technical Specification 24

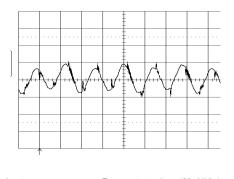

BMR454 series Fully regulated Intermediate Bus Converters	EN/LZT 146 404 R4A February 2011
Input 36-75 V, Output up to 40 A / 240 W	© Ericsson AB

8.1 V, 20 A / 162 W Electrical Specification

BMR 454 0000/006

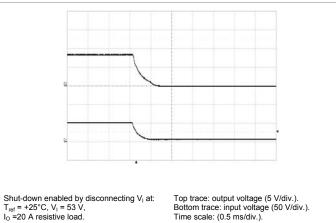
Output Characteristics



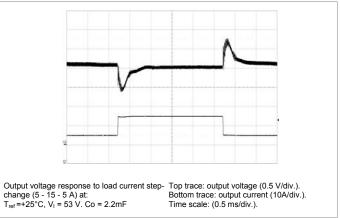

Current Limit Characteristics

Output voltage vs. load current at I_O > max I_O , T_{ref} = +25°C

Start-up



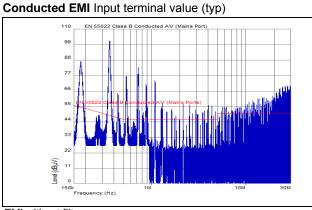
Output Ripple & Noise



Output voltage ripple at: T_{ref} = +25°C, V_I = 53 V, I_{O} = 20 A resistive load. Trace: output voltage (20mV/div.). Time scale: (2 µs/div.).

Shut-down

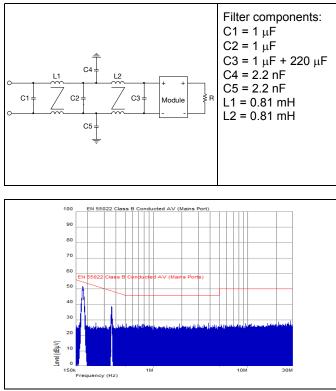
Output Load Transient Response


ERICSSON 💋

Technical Specification 25

BMR454 seriesFully regulated Intermediate Bus ConvertersEN/LZT 146 404 R4A February 2011Input 36-75 V, Output up to 40 A / 240 W© Ericsson AB

EMC Specification


Conducted EMI measured according to EN55022, CISPR 22 and FCC part 15J (see test set-up). See Design Note 009 for further information. The fundamental switching frequency is 180 kHz for BMR 454 at V_1 = 53 V, max I_0 .

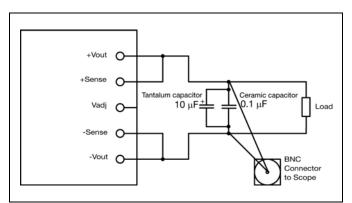
EMI without filter

External filter (class B)

Required external input filter in order to meet class B in EN 55022, CISPR 22 and FCC part 15J.

Printed Circuit Board 5µH 50W 50 ohm ten LISN rcvr DC Power 1 Filter (if use SuH SOW LISN Resis Optional Connecto to Earth Ground Τ 50 ohm EMC

Test set-up


Layout recommendations

The radiated EMI performance of the product will depend on the PWB layout and ground layer design. It is also important to consider the stand-off of the product. If a ground layer is used, it should be connected to one of the output terminals and the equipment ground or chassis.

A ground layer will increase the stray capacitance in the PWB and improve the high frequency EMC performance.

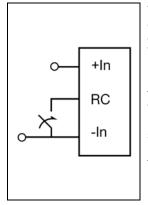
Output ripple and noise

Output ripple and noise measured according to figure below. See Design Note 022 for detailed information.

Output ripple and noise test setup

BMR454 series Fully regulated Intermediate Bus Converters	EN/LZT 146 404 R4A February 2011
Input 36-75 V, Output up to 40 A / 240 W	© Ericsson AB

Operating information


Input Voltage

The input voltage range 36 to 75Vdc meets the requirements of the European Telecom Standard ETS 300 132-2 for normal input voltage range in -48 and -60 Vdc systems, -40.5 to -57.0 V and -50.0 to -72 V respectively. At input voltages exceeding 75 V, the power loss will be higher than at normal input voltage and T_{P1} must be limited to absolute max +125°C. The absolute maximum continuous input voltage is 80 Vdc.

Turn-off Input Voltage

The product monitors the input voltage and will turn on and turn off at predetermined levels. The turn on and turn off level and the hysteresis in between can be configured via the PMBus. The default hysteresis between turn on and turn off input voltage is set to 2 V.

Remote Control (RC)

The products are fitted with a configurable remote control function on the primary and secondary side. The primary remote control is referenced to the primary negative input connection (-In). The RC function allows the converter to be turned on/off by an external device like a semiconductor or mechanical switch. The RC pin has an internal pull up resistor. The remote control functions can also be configured using the PMBus.

The maximum required sink current is 1 mA. When the RC pin is left open, the voltage generated on the RC pin is max 6 V. The logic options for the primary remote control is configured using the PMBus. The default setting is negative logic.

Remote Control (secondary side)

The CTRL CS pin can be configured as remote control via the PMBus interface. In the default configuration the CTRL CS pin is disabled and the output has an internal pull-up to 3.3V. The CTRL CS pin can be left open when not used. The logic options for the secondary remote control can be positive or negative logic.

Input and Output Impedance

The impedance of both the input source and the load will interact with the impedance of the product. It is important that the input source has low characteristic impedance. Minimum recommended external input capacitance is 100 uF. The performance in some applications can be enhanced by addition of external capacitance as described under External Decoupling Capacitors.

External Decoupling Capacitors

When powering loads with significant dynamic current requirements, the voltage regulation at the point of load can be improved by addition of decoupling capacitors at the load. The recommended minimum capacitance on the output is 100 uF. The most effective technique is to locate low ESR ceramic and electrolytic capacitors as close to the load as possible, using several parallel capacitors to lower the effective ESR. The ceramic capacitors will handle high-frequency dynamic load changes while the electrolytic capacitors are used to handle low frequency dynamic load changes. Ceramic capacitors will also reduce any high frequency noise across the load.

It is equally important to use low resistance and low inductance PWB layouts and cabling.

External decoupling capacitors will become part of the control loop of the product and may affect the stability margins. As a "rule of thumb", 100 μ F/A of output current can be added without any additional analysis. The ESR of the capacitors is a very important parameter. Power Modules guarantee stable operation with a verified ESR value of >10 m Ω across the output connections.

For further information please contact your local Ericsson Power Modules representative.

Parallel Operation

The products can be paralleled for redundancy if external oring diodes are used in series with the output.

PMBus configuration and support

The products provide a PMBus digital interface that enables the user to configure many aspects of the device operation as well as monitor the input and output parameters. Please contact your local Ericsson Power Modules representative for appropriate SW tools to down-load new configurations.

Output Voltage Adjust using PMBus

The output voltage of the product can be reconfigured using the PMBus interface. Both BMR 454 0000/XXX and BMR 454 0004/005 can be adjusted from 8.1V to 13.2V. However, if output voltages above 11V are desired at full load and at input below 40V, the BMR4540004/005 should be used. When output voltages below 11V are desired or the limited input range (40-75V) is acceptable, the BMR4540000/XXX is recommended for better efficiency and thermal performance. The BMR 454 0002/XXX can be adjusted from 3.0V to 6.7V at input voltages from 36V to 75V.

Margin Up/Down Controls

These controls allow the output voltage to be momentarily adjusted, either up or down, by a nominal 10 %. This provides a convenient method for dynamically testing the operation of the load circuit over its supply margin or range. It can also be used to verify the function of supply voltage supervisors. The margin up and down levels of the product can be reconfigured using the PMBus interface.

BMR454 series Fully regulated Intermediate Bus Converters	EN/LZT 146 404 R4A February 2011
Input 36-75 V, Output up to 40 A / 240 W	© Ericsson AB

Operating information continued

Soft-start Power Up

The soft-start control introduces a time-delay (default setting 40 ms) before allowing the output voltage to rise. The default rise time of the ramp up is 10 ms. Power-up is hence completed within 50 ms in default configuration using remote control. When starting by applying input voltage the control circuit boot-up time adds an additional 100 ms delay. The soft-start power up of the product can be reconfigured using the PMBus interface.

Remote Sense

The products have remote sense that can be used to compensate for voltage drops between the output and the point of load. The sense traces should be located close to the PCB ground layer to reduce noise susceptibility. The remote sense circuitry will compensate for up to 10% voltage drop between +Out pin and the point of load (+Sense). –Sense pin should be connected to –Out and can not be used as remote sense. If the remote sense is not needed +Sense should be connected to +Out. To be able to use remote sense the converter must be equipped with a digital connector.

Temperature Protection (OTP, UTP)

The products are protected from thermal overload by an internal temperature shutdown protection. When T_{P1} as defined in thermal consideration section is exceeded the product will shut down. The product will make continuous attempts to start up (non-latching mode) and resume normal operation automatically when the temperature has dropped below the temperature threshold, the hysteresis is defined in general electrical specification. The OTP and hysteresis of the product can be re-configured

using the PMBus interface. The product has also an under temperature protection. The OTP and UTP fault limit and fault response can be configured via the PMBus. Note: using the fault response "continue without interruption" may cause permanent damage of the product.

Over Voltage Protection (OVP)

The product has output over voltage protection that will shut down the converter in over voltage conditions (latching mode) The OVP fault level and fault response can be re-configured using the PMBus interface.

Over Current Protection (OCP)

The product includes current limiting circuitry for protection at continuous overload. The product will enter hic-up mode if the maximum output current is exceeded and the output voltage is below 0.3×Vout. The load distribution should be designed for the maximum output short circuit current specified. The OCP level and fault response can be re-configured using the PMBus interface. The default OCP configuration is set to hic-up mode for the over current protection.

Input Over/Under voltage protection

The input of the product can be protected agains high input voltage and low input voltage. The over- and under-voltage fault level and fault response can be configured via the PMBus interface.

Pre-bias Start-up

The product has a Pre-bias start up functionality and will not sink current during start up if a pre-bias source is present at the output terminals.

Synchronization

When the PG SYNC pin is configured as an input (SYNC IN) the device will automatically check for a clock signal on the PG SYNC pin each time the module is enabled by RC or via PMBus. The incoming clock signal must be 150, 200 or 250kHz and must be stable when the module is enabled. Note that PG SYNC pin is by default configured as Power Good output but may be reconfigured to SYNC IN via the PMBus interface.

Power Good

The PG SYNC pin is by default configured as Power Good output. The power good signal (TTL level) indicates proper operation of the product and can also be used as an error flag indicator. The Power Good signal is by default configured as active low and can be re-configured via the PMBus interface.

Tracking and External reference

The PG SYNC pin can be configured as an input for voltage tracking or an external analogue reference. The PG SYNC pin is configured via the PMBus interface and has default setting Power Good.

Switching frequency adjust using PMBus

The switching frequency is set to 180 kHz as default but this can be reconfigured via the PMBus interface. The product is optimized at this frequency but can run at lower and higher frequency, (150 kHz – 250 kHz). The electrical performance can be affected if the switching frequency is changed.

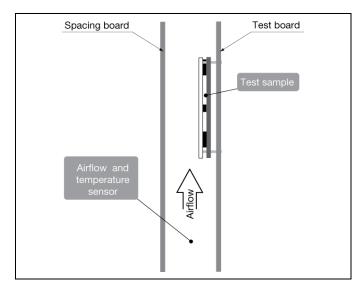
Input Transient

The BMR454 products have limited ability to react on sudden input voltage changes. As an example the 12V module BMR454xxxx/001 can have an output voltage deviation of 5V when a 20V input step is applied (40V to 60V). This is tested with a slew rate of 0.1V/us on the input voltage change and minimum output capacitance 100uF. Increasing the output capacitance will improve the result.

ERICSSON 📁

Technical Specification 28

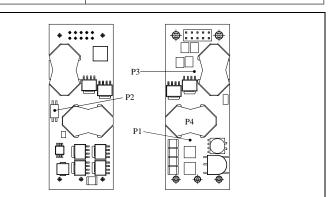
BMR454 seriesFully regulated Intermediate Bus ConvertersEN/LZT 146 404 R4A February 2011Input 36-75 V, Output up to 40 A / 240 W© Ericsson AB


Thermal Consideration

General

The products are designed to operate in different thermal environments and sufficient cooling must be provided to ensure reliable operation.

For products mounted on a PWB without a heat sink attached, cooling is achieved mainly by conduction, from the pins to the host board, and convection, which is dependant on the airflow across the product. Increased airflow enhances the cooling of the product. The Output Current Derating graph found in the Output section for each model provides the available output current vs. ambient air temperature and air velocity at $V_1 = 53 \text{ V}$.


The product is tested on a 254 x 254 mm, 35 μ m (1 oz), 8-layer test board mounted vertically in a wind tunnel with a cross-section of 608 x 203 mm.

Definition of product operating temperature

The product operating temperatures is used to monitor the temperature of the product, and proper thermal conditions can be verified by measuring the temperature at positions P1, P2 and P3. The temperature at these positions (T_{P1} , T_{P2} and T_{P3}) should not exceed the maximum temperatures in the table below. The number of measurement points may vary with different thermal design and topology. Temperatures above maximum T_{P1} , measured at the reference point P1 are not allowed and may cause permanent damage.

Position	Description	Max Temperature
P1	PCB (Reference point)	T _{P1} =125° C
P2	Opto-coupler	T _{P2} =105° C
P3	PCB (Output inductor)	Т _{Р3} =125° С
P4	Transformer core	T _{P4} =125° C

Top view Bottom view (Best airflow direction right to left.)

Ambient Temperature Calculation

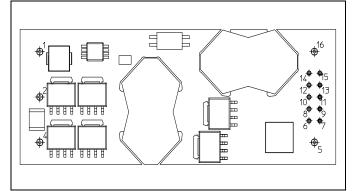
For products with base plate the maximum allowed ambient temperature can be calculated by using the thermal resistance.

1. The power loss is calculated by using the formula $((1/\eta) - 1) \times \text{output power} = \text{power losses (Pd)}.$ $\eta = \text{efficiency of product. E.g. 95\%} = 0.95$

2. Find the thermal resistance (Rth) in the Thermal Resistance graph found in the Output section for each model. *Note that the thermal resistance can be significantly reduced if a heat sink is mounted on the top of the base plate.*

Calculate the temperature increase (Δ T). Δ T = Rth x Pd

3. Max allowed ambient temperature is: Max T_{P1} - $\Delta T.$


- E.g. BMR 454 0100/001 at 1m/s:
- 1. $\left(\left(\frac{1}{0.94}\right) 1\right) \times 240 \text{ W} = 15.3 \text{ W}$
- 2. 15.3 W × 4.1°C/W = 63°C
- 3. 125 °C 63°C = max ambient temperature is 62°C

The actual temperature will be dependent on several factors such as the PCB size, number of layers and direction of airflow.

Technical Specification 29

BMR454 series Fully regulated Intermediate Bus Converters	EN/LZT 146 404 R4A February 2011
Input 36-75 V, Output up to 40 A / 240 W	© Ericsson AB

Connections (Top view)

Pin	Designation	Function
1	+In	Positive Input
2	RC	Remote Control
4	-In	Negative Input
5	-Out	Negative Output
6	S+	Positive Remote Sense
7	S-	Negative Remote Sense
8	SA0	Address pin 0
9	SA1	Address pin 1
10	SCL	PMBus Clock
11	SDA	PMBus Data
12	PG SYNC	Configurable I/O pin: Power Good output, SYNC-, tracking-, or ext ref-input
13	DGND	PMBus ground
14	SALERT	PMBus alert signal
15	CTRL CS	PMBus remote control
16	+Out	Positive Output

Technical Specification 30

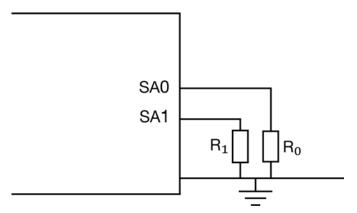
BMR454 series Fully regulated Intermediate Bus Converters	EN/LZT 146 404 R4A February 2011
Input 36-75 V, Output up to 40 A / 240 W	© Ericsson AB

PMBus Communications

The products provide a PMBus digital interface that enables the user to configure many aspects of the device operation as well as monitor the input and output voltages, output current and device temperature. The products can be used with any standard two-wire I^2C or SMBus host device. In addition, the device is compatible with PMBus version 1.1 and includes an SALERT line to help mitigate bandwidth limitations related to continuous fault monitoring.

Monitoring via PMBus

A system controller (host device) can monitor a wide variety of product parameters through the PMBus interface. The controller can monitor for fault condition by monitoring the SALERT pin, which will be asserted when any number of preconfigured fault or warning conditions occur. The system controller can also continuously monitor for any number of power conversion parameters including but not limited to the following:


- Input voltage
- Output voltage
- Output current
- Internal junction temperature
- Switching frequency
- Duty cycle

Evaluation software

A Configuration Monitoring and Management (CMM) evaluation software, is available for the product. For more information please contact your local Ericsson sales representative.

Addressing

The figure and table below show recommended resistor values with min and max voltage range for hard-wiring PMBus addresses (series E96, 1% tolerance resistors suggested):

SA0/SA1	$R_1 / R_0 [k\Omega]$	Min voltage[V]	Max voltage[V]
0	24.9	0.261	0.438
1	49.9	0.524	0.679
2	75	0.749	0.871
3	100	0.926	1.024
4	124	1.065	1.146
5	150	1.187	1.256
6	174	1.285	1.345
7	200	1.371	1.428

The SA0 and SA1 pins can be configured with a resistor to GND according to the following equation.

PMBus Address = 8 x (SA0value) + (SA1 value)

If any one of those voltage applied to ADC0 and ADC1 is out of the range from the table above, PMBus address 127 is assigned. If the calculated PMBus address is 0 or 12, PMBus address 127 is assigned instead. PMBus address 11 is not to be used. The user shall also be aware of further limitations of the addresses as stated in the PMBus Specification.

BMR454 seriesFully regulated Intermediate Bus ConvertersEN/LZT 146 404 R4A February 2011Input 36-75 V, Output up to 40 A / 240 W© Ericsson AB

PMBus Commands

The products are PMBus compliant. The following table lists the implemented PMBus commands. For more detailed information see PMBus Power System Management Protocol Specification; Part I – General Requirements, Transport and Electrical Interface and PMBus Power System Management Protocol; Part II – Command Language.

Designation	Cmd	Impl
Standard PMBus Commands		
Control Commands		
PAGE	00h	No
OPERATION	01h	Yes
ON_OFF_CONFIG	02h	Yes
WRITE_PROTECT	10h	Yes
Output Commands		
VOUT_MODE	20h	Yes
VOUT_COMMAND	21h	Yes
VOUT_TRIM	22h	Yes
VOUT_GAIN	23h	Yes
VOUT_MAX	24h	Yes
VOUT_MARGIN_HIGH	25h	Yes
VOUT_MARGIN_LOW	26h	Yes
VOUT_TRANSITION_RATE	27h	Yes
VOUT_DROOP	28h	No
VOUT_SCALE_LOOP	29h	Yes
VOUT_SCALE_MONITOR	2Ah	Yes
COEFFICIENTS	30h	No
POUT_MAX	31h	No
MAX_DUTY	32h	Yes
FREQUENCY_SWITCH	33h	Yes
VIN_ON	35h	Yes
VIN_OFF	36h	Yes
IOUT_CAL_GAIN	38h	Yes
IOUT_CAL_OFFSET	39h	Yes
Fault Limit Commands		
POWER_GOOD_ON	5Eh	Yes
POWER_GOOD_OFF	5Fh	Yes
VOUT_OV_FAULT_LIMIT	40h	Yes
VOUT_UV_FAULT_LIMIT	44h	Yes
IOUT_OC_FAULT_LIMIT	46h	Yes
IOUT_OC_LV_FAULT_LIMIT	48h	Yes
IOUT_UC_FAULT_LIMIT	4Bh	No
OT_FAULT_LIMIT	4Fh	Yes

Converters	EIN/LZ1 140 404 R4A		
© Ericsson AB			
Designation Cmd Impl			
OT_WARN_LIN	51h	Yes	
UT_WARN_LIMIT		52h	Yes
UT_FAULT_LIMIT		53h	Yes
VIN_OV_FAUL	T_LIMIT	55h	Yes
VIN_OV_WAR	N_LIMIT	57h	Yes
VIN_UV_WARM	N_LIMIT	58h	Yes
VIN_UV_FAUL	T_LIMIT	59h	Yes
VOUT_OV_WA	RN_LIMIT	42h	Yes
VOUT_UV_WA	RN_LIMIT	43h	Yes
IOUT_OC_WAI	RN_LIMIT	4Ah	Yes
IIN_OC_FAULT	LIMIT	5Bh	No
IIN_OC_WARN	I_LIMIT	5Dh	No
Fault Response	Commands		
VOUT_OV_FAU	ULT_RESPONSE	41h	Yes
VOUT_UV_FAU	JLT_RESPONSE	45h	Yes
OT_FAULT_RE	SPONSE	50h	Yes
UT_FAULT_RE	SPONSE	54h	Yes
VIN_OV_FAUL	T_RESPONSE	56h	Yes
VIN_UV_FAUL	T_RESPONSE	5Ah	Yes
IOUT_OC_FAU	JLT_RESPONSE	47h	Yes
IOUT_UC_FAU	ILT_RESPONSE	4Ch	No
IIN_OC_FAULT		5Ch	No
Time setting Co	ommands		
TON_DELAY		60h	Yes
TON_RISE		61h	Yes
TON_MAX_FA		62h	Yes
	ULT_RESPONSE	63h	Yes
TOFF_DELAY		64h	Yes
TOFF_FALL		65h	Yes
TOFF_MAX_WARN_LIMIT		66h	Yes
	nds (Read Only)		
CLEAR_FAULT	rs	03h	Yes
STATUS_BYTE		78h	Yes
STATUS_WORD		79h	Yes
STATUS_VOUT		7Ah	Yes
STATUS_IOUT		7Bh	Yes
STATUS_INPUT		7Ch	Yes
STATUS_TEMPERATURE		7Dh	Yes
STATUS_CML		7Eh	Yes
STATUS_OTH	7Fh	Yes	
Monitor Commands (Read Only)			
READ_VIN	_	88h	Yes

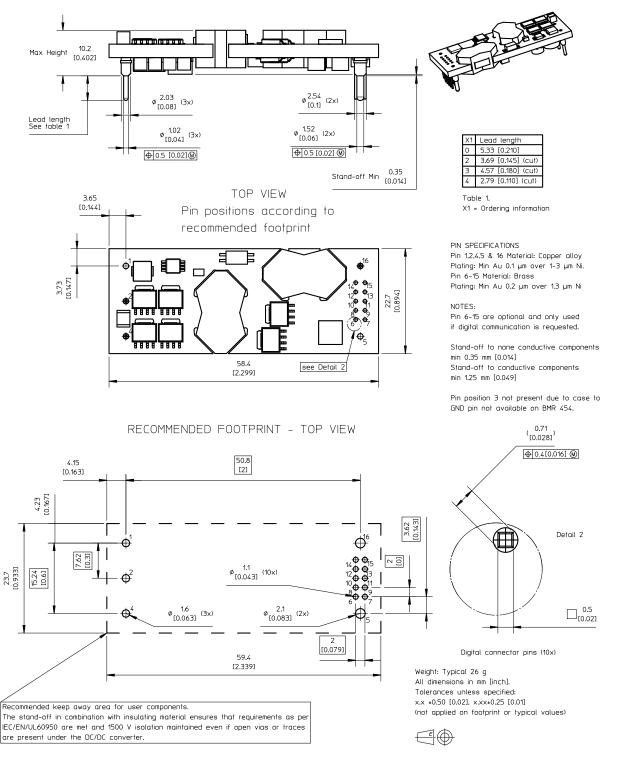
ERICSSON 📁

Technical Specification 32

BMR454 seriesFully regulated Intermediate Bus ConvertersEN/LZT 146 404 R4A February 2011Input 36-75 V, Output up to 40 A / 240 W© Ericsson AB

Designation	Cmd	Impl
READ_VOUT	8Bh	Yes
READ_IOUT	8Ch	Yes
READ_TEMPERATURE_1	8Dh	Yes
READ_TEMPERATURE_2	8Eh	Yes
READ FAN SPEED 1	90h	No
READ_DUTY_CYCLE	94h	Yes
READ_FREQUENCY	95h	Yes
READ_POUT	96h	No
READ PIN	97h	No
Identification Commands (Read Only)		
PMBUS_REVISION	98h	Yes
MFR_ID	99h	Yes
MFR MODEL	9Ah	Yes
MFR_REVISION	9Bh	Yes
MFR_LOCATION	9Ch	Yes
MFR DATE	9Dh	Yes
MFR_SERIAL	9Eh	Yes
Group Commands		
INTERLEAVE	37h	No
Supervisory Commands		
STORE_DEFAULT_ALL	11h	Yes
RESTORE DEFAULT_ALL	12h	Yes
STORE USER ALL	15h	Yes
RESTORE USER ALL	16h	Yes
BMR 454 Specific Commands	-	
MFR POWER GOOD POLARITY	D0h	Yes
MFR VOUT UPPER RESISTOR	D2h	Yes
MFR VIN SCALE MONITOR	D3h	Yes
MFR_CLA_TABLE_NUM_ROW	D4h	Yes
MFR_CLA_ROW_COEFFICIENTS	D5h	Yes
MFR_STORE_CLA_TABLE	D6h	Yes
MFR_ACTIVE_COEFF_CLA_TABLE	D8h	Yes
MFR_SELECT_TEMP_SENSOR	DCh	Yes
MFR_VIN_OFFSET	DDh	Yes
MFR_REMOTE_TEMP_CAL	E2h	Yes
MFR_REMOTE_CONTROL	E3h	Yes
 MFR_DEAD_BAND_MODE	E4h	Yes
MFR_DEAD_BAND_DELAY	E5h	Yes
MFR_TEMP_COEFF	E7h	Yes
MFR_VOUT_ANALOG_SCALE	E8h	Yes
MFR_READ_VOUT_ANALOG_REF	E9h	Yes
MFR_DEBUG_BUFF	F0h	Yes
	1	

Designation	Cmd	Impl
MFR_SETUP_PASSWORD	F1h	Yes
MFR_DISABLE_SECURITY	F2h	Yes
MFR_DEAD_BAND_IOUT_THRESHOLD	F3h	Yes
MFR_SECURITY_BIT_MASK	F4h	Yes
MFR_PRIMARY_TURN	F5h	Yes
MFR_SECONDARY_TURN	F6h	Yes
MFR_SET_DPWM_POLARITY	F7h	Yes
MFR_ILIM_SOFTSTART	F8h	Yes
MFR_MULTI_PIN_CONFIG	F9h	Yes
MFR_DEAD_BAND_VIN_THRESHOLD	FAh	Yes
MFR_DEAD_BAND_VIN_IOUT_HYS	FBh	Yes
MFR_FIRMEWARE_VERSION	FCh	Yes
MFR_MESSAGE_CODE_DEVICE_ID	FDh	Yes

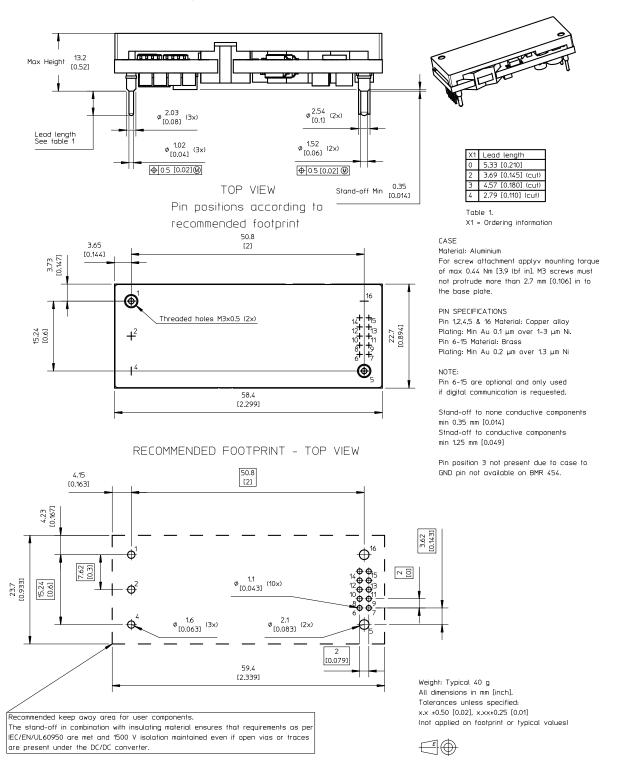

Notes:

Cmd is short for Command. Impl is short for Implemented.

Technical Specification 33

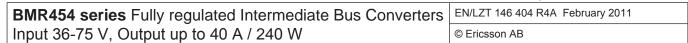
BMR454 seriesFully regulated Intermediate Bus ConvertersEN/LZT 146 404 R4A February 2011Input 36-75 V, Output up to 40 A / 240 W© Ericsson AB

Mechanical Information - Hole Mount, Open Frame Version

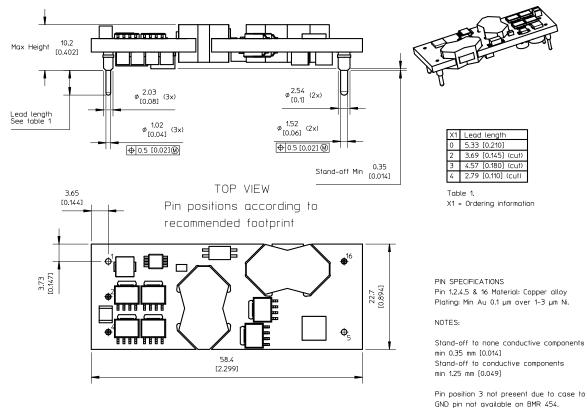


All component placements – whether shown as physical components or symbolical outline – are for reference only and are subject to change throughout the product's life cycle, unless explicitly described and dimensioned in this drawing.

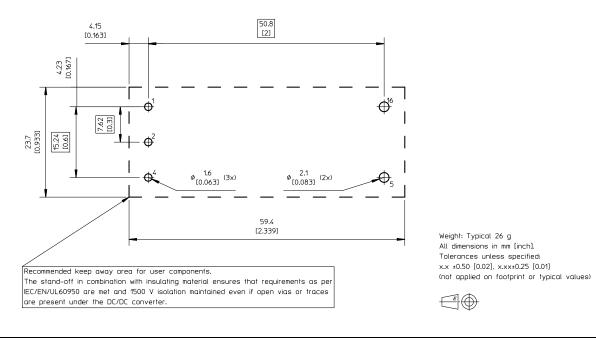
Technical Specification 34


BMR454 seriesFully regulated Intermediate Bus ConvertersEN/LZT 146 404 R4A February 2011Input 36-75 V, Output up to 40 A / 240 W© Ericsson AB

Mechanical Information- Hole Mount, Base Plate Version



All component placements – whether shown as physical components or symbolical outline – are for reference only and are subject to change throughout the product's life cycle, unless explicitly described and dimensioned in this drawing.



Mechanical Information- Hole Mount, Open Frame Version, Non Digital Interface

RECOMMENDED FOOTPRINT - TOP VIEW

Plating: Min Au 0.1 µm over 1-3 µm Ni.

All component placements – whether shown as physical components or symbolical outline – are for reference only and are subject to change throughout the product's life cycle, unless explicitly described and dimensioned in this drawing.

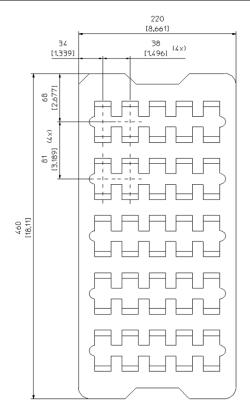
ERICSSON 📁

Technical Specification 36

BMR454 series Fully regulated Intermediate Bus Converters	EN/LZT 146 404 R4A February 2011
Input 36-75 V, Output up to 40 A / 240 W	© Ericsson AB

Soldering Information – Hole Mounting

The hole mounted product is intended for plated through hole mounting by wave or manual soldering. The pin temperature is specified to maximum to 270°C for maximum 10 seconds.


A maximum preheat rate of 4°C/s and maximum preheat temperature of 150°C is suggested. When soldering by hand, care should be taken to avoid direct contact between the hot soldering iron tip and the pins for more than a few seconds in order to prevent overheating.

A no-clean flux is recommended to avoid entrapment of cleaning fluids in cavities inside the product or between the product and the host board. The cleaning residues may affect long time reliability and isolation voltage.

Delivery package information

The products are delivered in antistatic trays.

Tray specifications		
Material	PE foam, dissipative	
Surface resistance	10 ⁵ to 10 ¹² ohms/square	
Tray capacity	25 converters/tray	
Box capacity	75 converters	
Weight	Product - Open frame 790 g full tray, 140 g empty tray Product – Base plate option 1265 g full tray, 140 g empty tray	

BMR454 series Fully regulated Intermediate Bus Converters	EN/LZT 146 404 R4A February 2011
Input 36-75 V, Output up to 40 A / 240 W	© Ericsson AB

Product Qualification Specification

Characteristics			
External visual inspection	IPC-A-610		
Change of temperature (Temperature cycling)	IEC 60068-2-14 Na	Temperature range Number of cycles Dwell/transfer time	-40 to 100°C 1000 15 min/0-1 min
Cold (in operation)	IEC 60068-2-1 Ad	Temperature T _A Duration	-45°C 72 h
Damp heat	IEC 60068-2-67 Cy	Temperature Humidity Duration	85°C 85 % RH 1000 hours
Dry heat	IEC 60068-2-2 Bd	Temperature Duration	125°C 1000 h
Electrostatic discharge susceptibility	IEC 61340-3-1, JESD 22-A114 IEC 61340-3-2, JESD 22-A115	Human body model (HBM) Machine Model (MM)	Class 2, 2000 V Class 3, 200 V
Immersion in cleaning solvents	IEC 60068-2-45 XA, method 2	Water Glycol ether Isopropyl alcohol	55°C 35°C 35°C
Mechanical shock	IEC 60068-2-27 Ea	Peak acceleration Duration	100 g 6 ms
Moisture reflow sensitivity ¹	J-STD-020C	Level 1 (SnPb-eutectic) Level 3 (Pb Free)	225°C 260°C
Operational life test	MIL-STD-202G, method 108A	Duration	1000 h
Resistance to soldering heat ²	IEC 60068-2-20 Tb, method 1A	Solder temperature Duration	270°C 10-13 s
Robustness of terminations	IEC 60068-2-21 Test Ua1 IEC 60068-2-21 Test Ue1	Through hole mount products Surface mount products	All leads All leads
Solderability	IEC 60068-2-58 test Td ¹	Preconditioning Temperature, SnPb Eutectic Temperature, Pb-free	150°C dry bake 16 h 215°C 235°C
	IEC 60068-2-20 test Ta ²	Preconditioning Temperature, SnPb Eutectic Temperature, Pb-free	Steam ageing 235°C 245°C
Vibration, broad band random	IEC 60068-2-64 Fh, method 1	Frequency Spectral density Duration	10 to 500 Hz 0.07 g²/Hz 10 min in each direction

Notes ¹ Only for products intended for reflow soldering (surface mount products) ² Only for products intended for wave soldering (plated through hole products)

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Ericsson Power Modules: BMR4540002/004 BMR4540004/005