Voltage Transducer LV 25-1200

For the electronic measurement of voltages : DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit).

Electrical data

CE

V _{PN}	Primary nominal r.m.s. voltage		1200 0 ± 1800		V V		
V _Р	Primary voltage, measuring range Primary nominal r.m.s. current		6.7		mĂ		
I _{PN} R _M	Measuring resistance		R _{M min}	R _{Mmax}			
	with ± 12 V	@ ±1200 V _{max}	30	200	Ω		
		@ ±1800 V _{max}	30	100	Ω		
	with ± 15 V	@ ±1200 V _{max}	100	320	Ω		
		@ ±1800 V _{max}	100	180	Ω		
I _{sn}	Secondary nominal r.m.s. current		25		mΑ		
ĸ	Conversion ratio		1200 V / 25 mA		Ą		
V _c	Supply voltage (± 5 %)		± 12	15	V		
I _c	Current consumption		10 (@±15V)+ I _s		mΑ		
V_{d}	R.m.s. voltage for AC isolat	tion test ¹⁾ , 50 Hz, 1 mn	4.1		kV		
Accuracy - Dynamic performance data							
X _G	Overall Accuracy @ V_{PN} , $T_{A} = 25^{\circ}C$		± 0.8		%		
e	Linearity		< 0.2		%		
			Тур	Max			
I _o	Offset current @ $I_p = 0$, $T_A =$	= 25°C		± 0.15	mΑ		
I _{OT}	Thermal drift of I _o	- 25°C + 25°C	± 0.10	± 0.60	mΑ		
		+ 25°C + 70°C	± 0.10	± 0.35	mΑ		
t,	Response time @ 90 % of	V _{PN}	60		μs		

General data

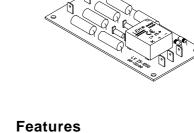
T _A T _s	Ambient operating temperature Ambient storage temperature	- 25 + 70 - 40 + 85	°C ℃
's N	Turns ratio	3700 : 1000	0
Р	Total primary power loss	8	W
R ₁	Primary resistance @ $\mathbf{T}_{A} = 25^{\circ}\mathrm{C}$	180	kΩ
Rs	Secondary coil resistance @ $T_A = 70^{\circ}C$	110	Ω
m	Mass	60	g
	Standards ²⁾	EN 50178	

Notes : 1) Between primary and secondary

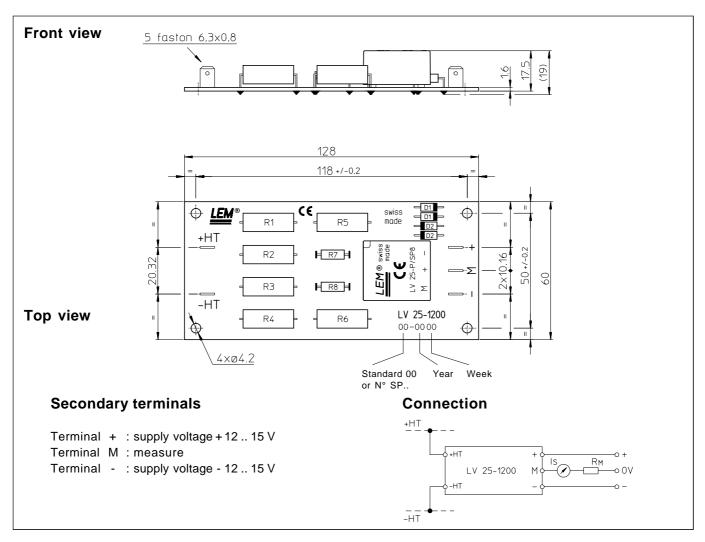
²⁾ A list of corresponding tests is available

- Closed loop (compensated) voltage transducer using the Hall effect
- Transducer with insulated plastic case recognized according to UL 94-V0
- Primary resistor R, and transducer mounted on printed circuit board 128 x 60 mm.

Advantages


- Excellent accuracy
- Very good linearity
- Low thermal drift
- High immunity to external interference.

Applications


- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Uninterruptible Power Supplies (UPS)
- · Power supplies for welding applications.

1200 V $V_{PN} =$

Dimensions LV 25-1200 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Fastening
- Connection of primaryConnection of secondary
- Faston 6.3 x 0.8 mm / Faston 6.3 x 0.8 mm

± 0.3 mm

4 holes Ø 4.2 mm

Remarks

- $\mathbf{I}_{_{\mathrm{S}}}$ is positive when $\mathbf{V}_{_{\mathrm{P}}}$ is applied on terminal +HT.
- The primary circuit of the transducer must be linked to the connections where the voltage has to be measured.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.