

Current Transducer LA 25-NP/SP11

For the electronic measurement of currents: DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

$I_{PN} = 1 A$

Electrical data

I _{PN}	Primary nominal r.m.s. current		1		Α
I _P	Primary current, measuring range		0 ± 1.5		Α
\mathbf{R}_{M}	Measuring resistance		$R_{_{ m Mmin}}$	\mathbf{R}_{Mmax}	
	with ± 15 V	@ $\pm 1.0 A_{max}$	100	320	Ω
		@ ± 1.5 A max	100	190	Ω
I _{SN}	Secondary nominal r.m.s. current		25		mΑ
$\mathbf{K}_{_{\mathrm{N}}}$	Conversion ratio		25 : 10	00	
V _c	Supply voltage (± 5 %)		± 15		V
I _c	Current consumption		10 + I _s		mΑ
V _d	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn		2.5		kV
V _b	R.m.s. rated voltage 1), safe separation		600		V
ž	ba	asic isolation	1700		V

Features

- Closed loop (compensated) multiturns current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Special features

•	$I_{\rm PN}$	=	1	Α	
			_		

• $I_p = 0 .. \pm 1.5 A$ • $K_N = 25 : 1000.$

Advantages

Excellent accuracy

- Very good linearity
- Low temperature drift
- Optimized response time
- Virginia Contract in the contr
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Accuracy - Dynamic performance data

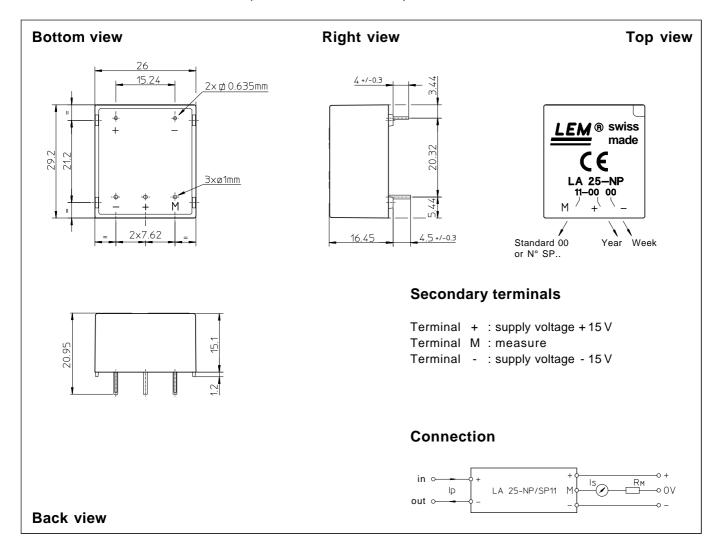
X	Typical accuracy @ \mathbf{I}_{PN} , \mathbf{T}_{A} = 25°C		± 0.5		%
$\mathbf{e}_{\!\scriptscriptstyle L}$	Linearity		< 0.2		%
			Тур	Max ± 0.15	
I_{\circ}	Offset current ²⁾ @ $I_P = 0$, $T_A = 25^{\circ}C$;	± 0.05	± 0.15	mΑ
I_{OM}	Residual current 3) @ $\mathbf{I}_{p} = 0$, after a	n overload of 3 x I _{PN}	± 0.05	± 0.15	mΑ
I _{OT}	Thermal drift of I _o	0°C + 25°C	± 0.06	± 0.25	mΑ
		+ 25°C + 70°C	± 0.10	± 0.35	mΑ
t _r	Response time 4) @ 90 % of I _{P max}		< 1		μs
f	Frequency bandwidth (- 1 dB)		DC ′	150	kHz

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

General data

T_{A}	Ambient operating temperature	0 + 70	°C	
T _s	Ambient storage temperature	- 25 + 85	°C	
\mathbf{R}_{P}^{r}	Primary coil resistance @ T _A = 25°C	< 51	$ m \Omega$	
R _s	Secondary coil resistance @ T _A = 70°C	110	Ω	
L _P	Primary insertion inductance	31	μΗ	
R	Isolation resistance @ 500 V, T _A = 25°C	> 1500	$M\Omega$	
m	Mass	22	g	
	Standards	EN 50178 : 1	EN 50178 : 1997	


Notes: 1) Pollution class 2

- ²⁾ Measurement carried out after 15 mn functioning
- 3) The result of the coercive field of the magnetic circuit
- 4) With a di/dt of 100 A/µs.

060405/2

Dimensions LA 25-NP/SP11 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance

• Fastening & connection of primary

Fastening & connection of secondary 3 pins Ø 1 mm

• Recommended PCB hole

± 0.2 mm

2 pins

0.635 x 0.635 mm

1.2 mm

Remark

 \bullet I_s is positive when I_p flows from terminal + to terminal -.