

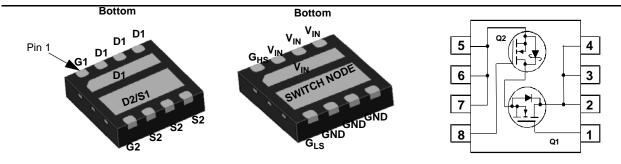
Dual N-Channel PowerTrench[®] MOSFETs 30 V, 22 m Ω , 10 m Ω

Features

- Q1: N-Channel
- Max $r_{DS(on)}$ = 22 m Ω at V_{GS} = 10 V, I_D = 6 A
- Max $r_{DS(on)}$ = 34 m Ω at V_{GS} = 4.5 V, I_D = 5 A

Q2: N-Channel

- Max $r_{DS(on)}$ = 10 m Ω at V_{GS} = 10 V, I_D = 8.5 A
- Max $r_{DS(on)}$ = 13.5 m Ω at V_{GS} = 4.5 V, I_D = 7.2 A
- RoHS Compliant



General Description

This device includes two specialized N-Channel MOSFETs in a dual power33 (3mm X 3mm MLP) package. The switch node has been internally connected to enable easy placement and routing of synchronous buck converters. The control MOSFET (Q1) and synchronous MOSFET (Q2) have been designed to provide optimal power efficiency.

Applications

- Mobile Computing
- Mobile Internet Devices
- General Purpose Point of Load

Power33

MOSFET Maximum Ratings $T_C = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter			Q1	Q2	Units
V _{DS}	Drain to Source Voltage			30	30	V
V _{GS}	Gate to Source Voltage		(Note 4)	±20	±20	V
	Drain Current -Continuous (Package limited)	T _C = 25 °C		18	13	
	-Continuous (Silicon limited)	T _C = 25 °C		23	46	<u>,</u>
D	-Continuous	T _A = 25 °C		7 ^{1a}	13 ^{1b}	A
	-Pulsed	-Pulsed				
E _{AS}	Single Pulse Avalanche Energy		(Note 3)	12	32	
P _D	Power Dissipation for Single Operation	T _A = 25°C		1.9 ^{1a}	2.5 ^{1b}	14/
	Power Dissipation for Single Operation $T_A = 25^{\circ}C$			0.7 ^{1c}	1.0 ^{1d}	W
T _J , T _{STG}	Operating and Storage Junction Temperature F	ting and Storage Junction Temperature Range -55 to +150			+150	°C

Thermal Characteristics

R_{\thetaJA}	Thermal Resistance, Junction to Ambient		50 ^{1b}	
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	180 ^{1c}	125 ^{1d}	°C/W
$R_{\theta,JC}$	Thermal Resistance, Junction to Case	7.5	4.2]

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDMC7200S	FDMC7200S	Power 33	13"	12 mm	3000 units

June 2014

Ū
Ξ
ō
N
B
õ
ž
a
=
Ż
ò
÷
an
2
٦ C
Ψ.
Τ
Q
Ňe
Ð
Ĥ
2
Ĕ
ิด
7
B
Ζ
ō
MOSFETs
Ť
Π.
Ä
0,

Symbol	Parameter	Test Conditions	Туре	Min	Тур	Max	Units	
Off Chara	acteristics							
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \ \mu A, V_{GS} = 0 \ V$ $I_D = 1mA, V_{GS} = 0 \ V$	Q1 Q2	30 30			V	
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, referenced to 25°C $I_D = 1$ mA, referenced to 25°C	Q1 Q2		14 13		mV/°C	
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 24$ V, $V_{GS} = 0$ V	Q1 Q2			1 500	μA	
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20$ V, $V_{DS} = 0$ V	Q1 Q2			100 100	nA nA	
On Chara	octeristics							
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = 250 \ \mu A$ $V_{GS} = V_{DS}$, $I_D = 1mA$	Q1 Q2	1.0 1.0	2.3 2.0	3.0 3.0	V	
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, referenced to 25°C $I_D = 1$ mA, referenced to 25°C	Q1 Q2		-5 -6		mV/°C	
	Citatia Dasia ta Caura Ora Dasiatana		Q1		17 25 23	22 34 30	— mΩ	
r _{DS(on)}	Static Drain to Source On Resistance		Q2		7.8 10.3 11.4	10.0 13.5 13.1	11152	
9 _{FS}	Forward Transconductance	$V_{DD} = 5 V, I_D = 6 A$ $V_{DD} = 5 V, I_D = 8.5 A$	Q1 Q2		29 43		S	
Dynamic	Characteristics							
C _{iss}	Input Capacitance		Q1 Q2		495 1080	660 1436	pF	
C _{oss}	Output Capacitance	V _{DS} = 15 V, V _{GS} = 0 V, f = 1 MHZ	Q1 Q2		145 373	195 495	pF	
C _{rss}	Reverse Transfer Capacitance		Q1 Q2		20 35	30 52	pF	
R _g	Gate Resistance		Q1 Q2	0.2 0.2	1.4 1.2	4.2 3.6	Ω	
Switching	g Characteristics							
t _{d(on)}	Turn-On Delay Time	Q1	Q1 Q2		11 7.6	20 15	ns	
t _r	Rise Time	$V_{\text{DD}} = 15 \text{ V}, \text{ I}_{\text{D}} = 1 \text{ A},$ $V_{\text{GS}} = 10 \text{ V}, \text{ R}_{\text{GEN}} = 6 \Omega$	Q1 Q2		3.1 1.8	10 10	ns	
t _{d(off)}	Turn-Off Delay Time		Q1 Q2		35 21	56 34	ns	
t _f	Fall Time	$V_{GS} = 10$ V, $R_{GEN} = 6$ Ω	Q1 Q2		1.3 8.5	10 17	ns	
Q _{g(TOT)}	Total Gate Charge	$V_{GS} = 0 V \text{ to } 10 V$ Q1	Q1 Q2		7.3 15.7	10 22	nC	
Q _{g(TOT)}	Total Gate Charge	$V_{GS} = 0 V \text{ to } 4.5 V$ $I_D = 6 A$	Q1 Q2		3.1 7.2	4.3 10	nC	
					1		T	

©2011 Fairchild Semiconductor Corporation FDMC7200S Rev.C4

Gate to Source Charge

Gate to Drain "Miller" Charge

 Q_gs

 Q_{gd}

2

Q2

 $V_{DD} = 15 V$ $I_{D} = 8.5 A$

Q1

Q2

Q1

Q2

1.8

3

1

1.9

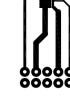
nC

nC


Symbol	Parameter	Test Conditions		Туре	Min	Тур	Max	Units
Drain-Source Diode Characteristics								
V _{SD} Source		$V_{GS} = 0 V, I_{S} = 6 A$	(Note 2)	Q1		0.8	1.2	V
	Source-Drain Diode Forward Voltage	$V_{GS} = 0 V, I_{S} = 8.5 A$	(Note 2)	Q2		0.8	1.2	
		$V_{GS} = 0 V, I_{S} = 1.3 A$	(Note 2)	Q2		0.6	0.8	
	Reverse Recovery Time	Q1		Q1		13	24	ns
rr		I _F = 6 A, di/dt = 100 A/s		Q2		20	32	
Q _{rr} Reverse Rec	Davana Daarvan Channa	Q2		Q1		2.3	10	
	Reverse Recovery Charge	$I_F = 8.5 \text{ A}, \text{ di/dt} = 300 \text{ A/s}$		Q2		15	24	nC

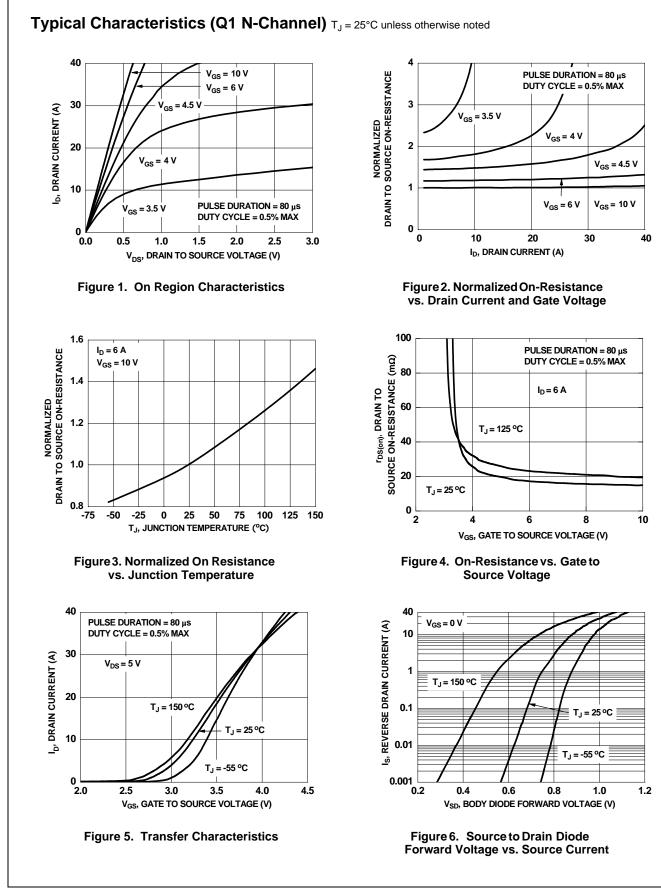
200

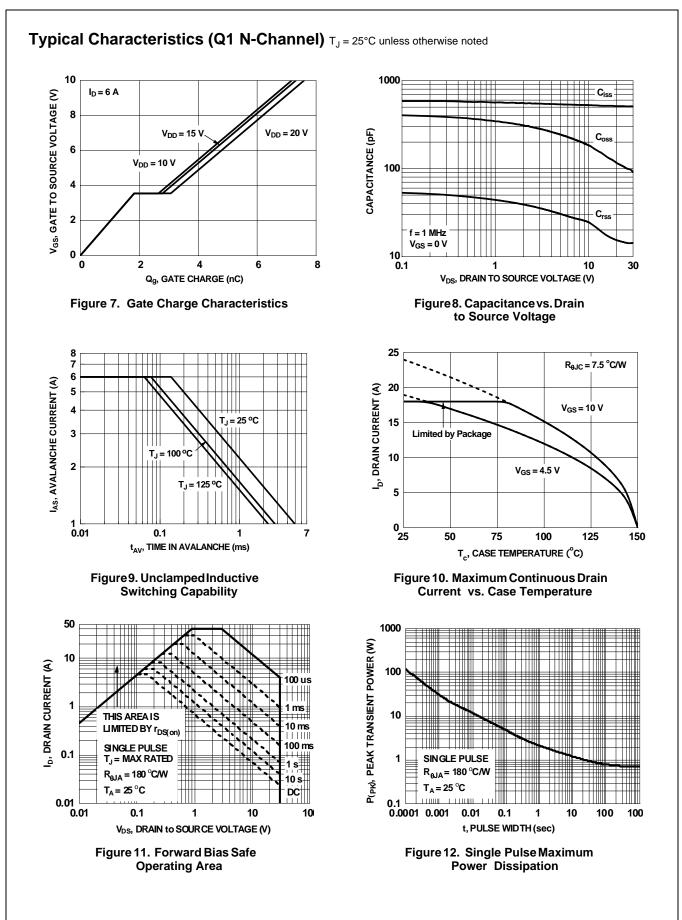
c. 180 °C/W when mounted on a minimum pad of 2 oz copper

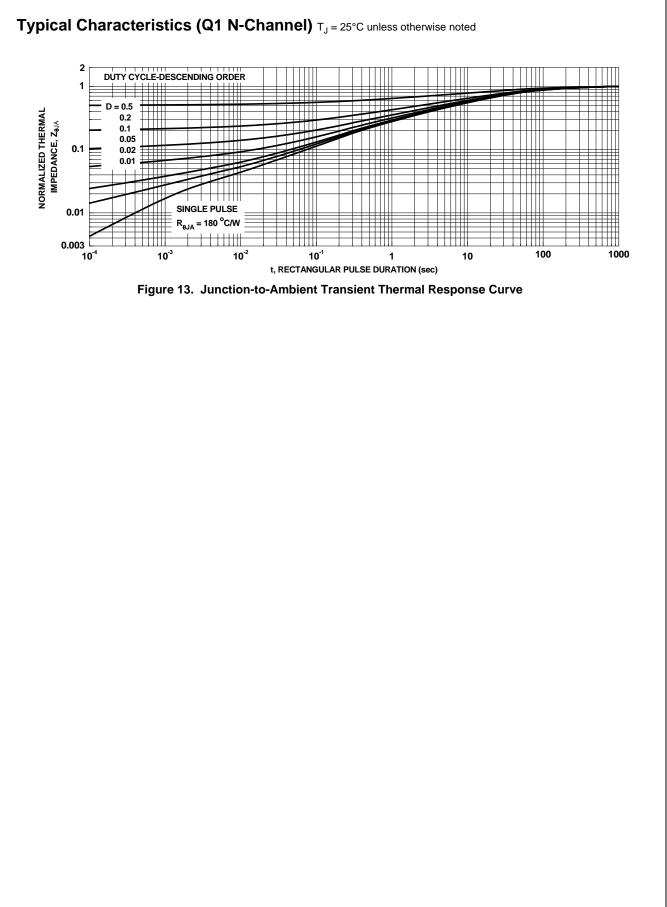

ođ

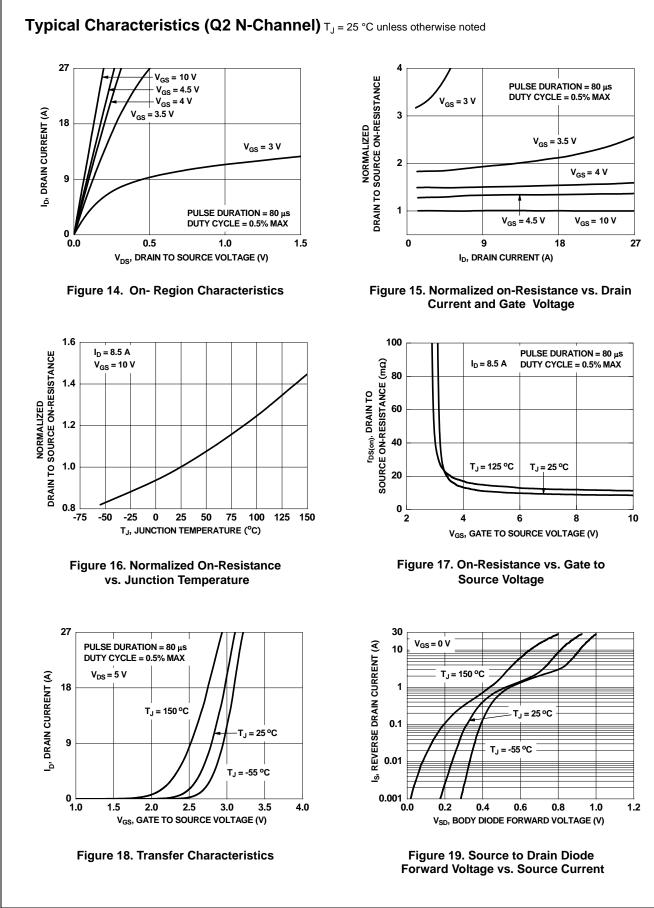
b.50 °C/W when mounted on a 1 in² pad of 2 oz copper

d. 125 °C/W when mounted on a minimum pad of 2 oz copper

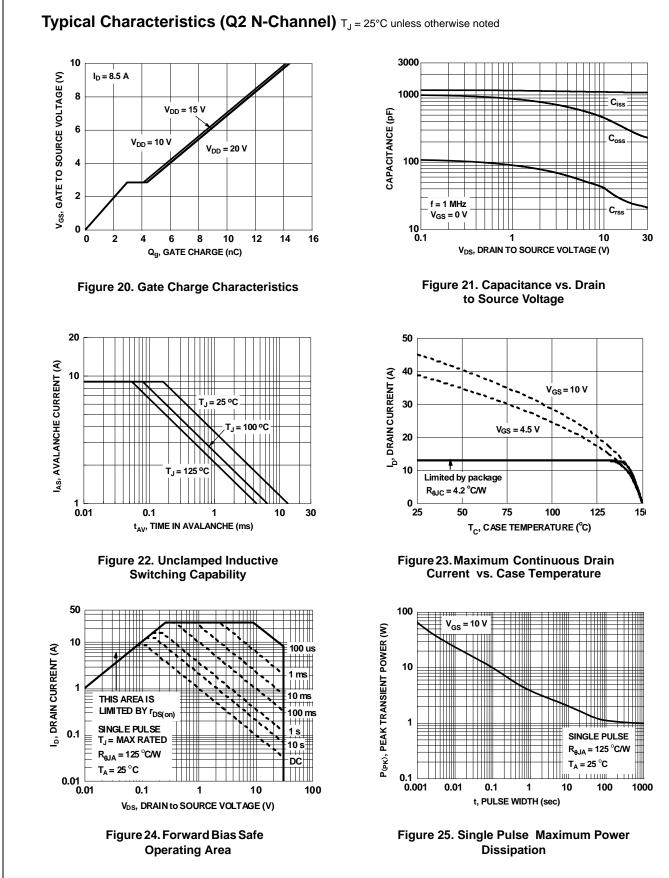

a.65 °C/W when mounted on a 1 in² pad of 2 oz copper

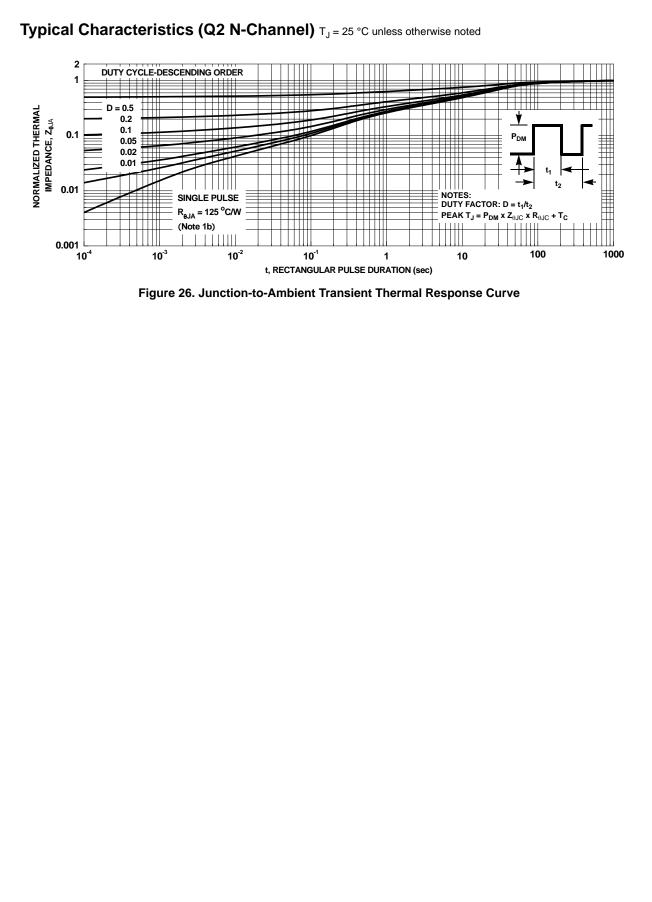



2. Pulse Test: Pulse Width < 300 $\ \mu s,$ Duty cycle < 2.0%.


3. Starting Q1: T = 25 °C, L = 1 mH, I = 5 A, Vgs = 10V, Vdd = 27V, 100% test at L = 3 mH, I = 4 A; Q2: T = 25° C, L = 1 mH, I = 8 A, Vgs = 10V, Vdd = 27V, 100% test at L = 3 mH, I = 3.2 A.

4. As an N-ch device, the negative Vgs rating is for low duty cycle pulse ocurrence only. No continuous rating is implied.





©2011 Fairchild Semiconductor Corporation FDMC7200S Rev.C4

FDMC7200S Dual N-Channel PowerTrench[®] MOSFETs

Typical Characteristics (continued)

SyncFET[™] Schottky body diode Characteristics

Fairchild's SyncFETTM process embeds a Schottky diode in parallel with PowerTrench[®] MOSFET. This diode exhibits similar characteristics to a discrete external Schottky diode in parallel with a MOSFET. Figure 27 shows the reverse recovery characteristic of the FDMC7200S.

Schottky barrier diodes exhibit significant leakage at high temperature and high reverse voltage. This will increase the power in the device.

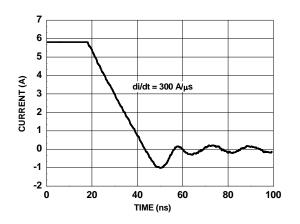


Figure 27. FDMC7200S SyncFETTM Body Diode Reverse Recovery Characteristic

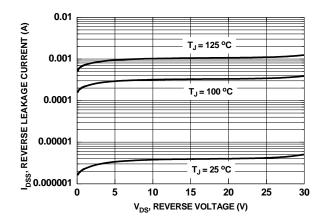
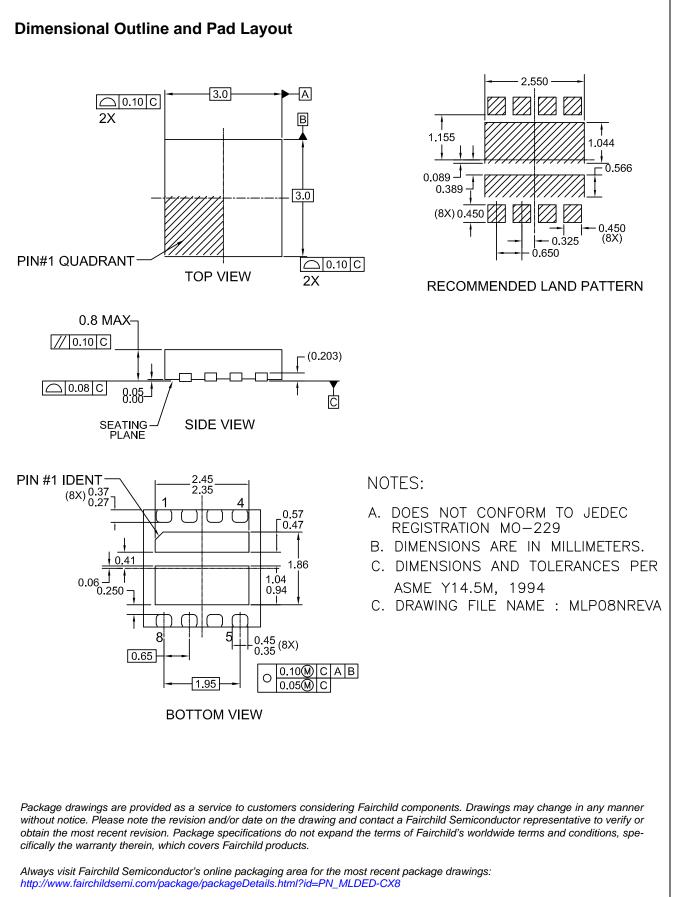



Figure 28. SyncFET[™] Body Diode Reverse Leakage vs. Drain-source Voltage

Not In Production

Obsolete

Datasheet contains specifications on a product that is discontinued by Fairchild

Semiconductor. The datasheet is for reference information only.

Rev. 168 www.fairchildsemi.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: