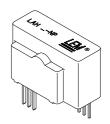


Current Transducer LAH 25-NP

For the electronic measurement of currents: DC, AC, pulsed ..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data Αt Primary nominal r.m.s. current 25 I_{PN} Primary current, measuring range 1) 0..55 Αt $R_{\rm M}$ Measuring resistance @ $T_{\Lambda} = 70^{\circ}C$ $T_{\Delta} = 85^{\circ}C$ with ± 12 V 257 252 Ω @ I_{PN} [± At_{DC}] @ I_{PN} [At _{RMS}]2) 0 155 0 150 Ω $@ I_{PN} [\pm At_{DC}]$ 67 371 70 366 Ω with ± 15 V @ \mathbf{I}_{PN} [At $_{RMS}$]²⁾ @ \mathbf{I}_{P} < \mathbf{I}_{PN} ³⁾ 67 236 70 231 Ω


I _{SN}	Secondary nominal r.m.s. current	25	mΑ
K _N	Conversion ratio	1 - 2 - 3 : 100	00
V _C	Supply voltage (± 5 %)	± 12 15	V
I _C	Current consumption	10 (@ ± 15V)	+ I _s mA
V _d	R.m.s. voltage for AC isolation test, 50/60 Hz, 1 mn	5	kV
V _b	R.m.s. rated voltage 4)	600	V

	Accuracy - Dynamic performance data							
X	Accuracy ⁵⁾ @ \mathbf{I}_{PN} $\mathbf{T}_{A} = 25^{\circ}C$	± 0.3		%				
$\mathbf{e}_{\scriptscriptstyle \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	Linearity	< 0.2		%				
		Тур	Max					
Io	Offset current @ T _A = 25°C		Max ± 0.15	mΑ				
I _{OM}	Residual current @ $I_p = 0$, after an overload of 5 x I_{PN}	± 0.20	± 0.25	mΑ				
I _{OT}		± 0.10	± 0.60	mΑ				
٠.	- 25°C + 85°C	± 0.10	± 0.70	mΑ				
t _{ra}	Reaction time @ 10 % of I _{PN}	< 200		ns				
t,	Response time ⁶⁾ @ 90 % of I _{PN}	< 500		ns				
di/	dt di/dt accurately followed	> 200		A/µs				

General data							
T _Δ	Ambient operating temperature		- 25 + 85	°C			
T _s	Ambient storage temperature		- 40 + 90	°C			
\mathbf{R}_{s}	Secondary coil resistance	@ $T_{\Delta} = 70^{\circ}C$	99	Ω			
Ü		@ T_{Δ} = 85°C	104	Ω			
m	Mass	^	20	g			
	Standards 7)		EN 50178				

<u>Notes</u>: 1)During 10 s, with $R_M \le 109 \Omega$ ($V_C = \pm 15 V$) - 2) 50 Hz Sinusoidal -3) The measuring resistance $\mathbf{R}_{\text{M min}}$ may be lower (see "LAH Technical Information" leaflet) - 4) Pollution class 2, cat. III - 5) Without \mathbf{I}_{O} & \mathbf{I}_{OM} - 6) With a di/dt of 100 A/µs - 7) A list of corresponding tests is available.

$I_{DN} = 8-12-25 \text{ A}$

Features

- · Closed loop (compensated) multirange current transducer using the Hall effect
- Printed circuit board mounting
- Insulated plastic case recognized according to UL 94-V0.

Advantages

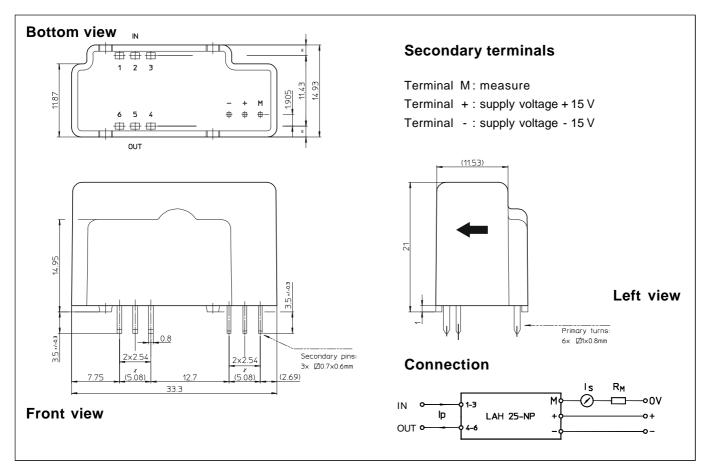
- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

kHz

DC .. 200

- AC variable speed drives and servo motor drives
- · Static converters for DC motor drives
- · Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- · Power supplies for welding applications.


010822/3

f

Frequency bandwidth (- 1 dB)

Dimensions LAH 25-NP (in mm. 1 mm = 0.0394 inch)

Number of primary turns	Primary nominal I _{PN} [A]	current maximum I _P [A]	Nominal output current I_{SN} [mA]	Turns ratio K _N	Primary resistance \mathbf{R}_{P} [m Ω]	Primary insertion inductance L _P [µH]	Recommended PCB connections
1	25	55	25	1 : 1000	0.18	0.012	3 2 1 IN O-O-O O-O-O OUT 4 5 6
2	12	27	24	2 : 1000	0.81	0.054	3 2 1 IN O-0 0 O-0 0 OUT 4 5 6
3	8	18	24	3 : 1000	1.62	0.110	3 2 1 IN Q Q O O O O

Mechanical characteristics

- General tolerance
- Fastening & connection of primary Recommended PCB hole
- Fastening & connection of secondary Recommended PCB hole
- ± 0.2 mm
- 6 pins 1 x 0.8 mm
- 1.5 mm
- 3 pins 0.7 x 0.6 mm 1.2 mm

Remarks

- I_s is positive when I_p flows from terminals 1, 2, 3 (IN) to terminals 6, 5, 4 (OUT).
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.