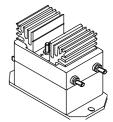
For the electronic measurement of voltages : DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit).

Electrical data

V _{PN} V _P I _{PN}	Primary nominal r.m.s. voltage Primary voltage, measuring range Primary nominal r.m.s. current		50 0±75 200		V V mA
\mathbf{R}_{M}	Measuring resistance		$R_{_{M}}$ min	R _{M max}	
	with ± 15 V	@ ± 50 V _{max} @ ± 75 V _{max}	0 0	170 90	$\Omega \ \Omega$
I _{SN}	Secondary nominal r.m.s. current		50		mA
K _N	Conversion ratio		50 V / 50 mA		
V _c	Supply voltage (± 5 %)		± 15		V
۱ _с	Current consumption		10 + I _s		mA
Ŭ _d	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn		6		kV


Accuracy - Dynamic performance data

X _G e	Overall Accuracy @ \mathbf{V}_{PN} , $\mathbf{T}_{A} = 25^{\circ}C$ Linearity		± 0.7 < 0.1		% %
l _o	Offset current @ $I_P = 0$, $T_A = 25^{\circ}C$	0°C + 70°C	Typ	Max	mA
I _{ot}	Thermal drift of I_O		± 0.2	± 0.2	mA
t _r	Response time @ 90 % of V_{PN}		40	± 0.3	µs

General data

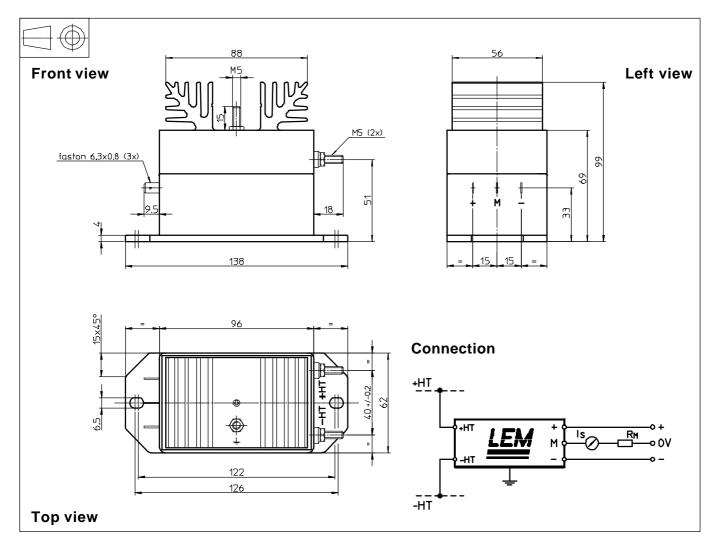
T _A T _S N	Ambient operating temperature Ambient storage temperature Turns ratio	0 + 70 - 25 + 85 500 : 2000	°C ℃
P	Total primary power loss	10	W
\mathbf{R}_1	Primary resistance @ $T_A = 25^{\circ}C$	0.25	kΩ
Rs	Secondary coil resistance @ $T_A = 70^{\circ}C$	60	Ω
m	Mass	850	g
	Standards	EN 50178	

 $V_{PN} = 50 V$

Features

- Closed loop (compensated) voltage transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0
- Primary resistor **R**₁ incorporated into the housing.

Advantages


- Excellent accuracy
- Very good linearity
- Low thermal drift
- High immunity to external interference.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Power supplies for welding applications.

Dimensions LV 100-50 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Transducer fastening
- Fastening torque max
- Connection of primary
- Connection of secondary
- Connection to the ground
- Fastening torque max

 \pm 0.3 mm 2 holes Ø 6.5 mm M6 steel screws 5 Nm or 3.69 Lb - Ft. M5 threaded studs Faston 6.3 x 0.8 mm M5 threaded stud 2.2 Nm or 1.62 Lb. -Ft.

Remarks

- I_s is positive when V_P is applied on terminal +HT.
- The primary circuit of the transducer must be linked to the connections where the voltage has to be measured.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.