DATA SHEET

MOS INTEGRATED CIRCUIT μ PD42S17805L, 4217805L

3.3 V OPERATION 16 M-BIT DYNAMIC RAM 2 M-WORD BY 8-BIT, EDO

Description

NEC

The μ PD42S17805L, 4217805L are 2,097,152 words by 8 bits CMOS dynamic RAMs with optional EDO. EDO is a kind of the page mode and is useful for the read operation.

Besides, the μ PD42S17805L can execute \overline{CAS} before \overline{RAS} self refresh.

The μ PD42S17805L, 4217805L are packaged in 28-pin plastic TSOP (II) and 28-pin plastic SOJ.

Features

*

- EDO (Hyper page mode)
- 2,097,152 words by 8 bits organization
- Single +3.3 V ± 0.3 V power supply
- Fast access and cycle time

Part number	Power consumption Active (MAX.)	·		EDO (Hyper page mode) cycle time (MIN.)
μPD42S17805L-A50, 4217805L-A50	432 mW	50 ns	84 ns	20 ns
μPD42S17805L-A60, 4217805L-A60	360 mW	60 ns	104 ns	25 ns
µPD42S17805L-A70, 4217805L-A70	324 mW	70 ns	124 ns	30 ns

The μPD42S17805L can execute CAS before RAS self refresh

Part number	Refresh cycle	Refresh	Power consumption at standby (MAX.)
μPD42S17805L	2,048 cycles/128 ms	CAS before RAS self refresh, CAS before RAS refresh, RAS only refresh, Hidden refresh	0.54 mW (CMOS level input)
μΡD4217805L	2,048 cycles/32 ms	CAS before RAS refresh, RAS only refresh, Hidden refresh	1.8 mW (CMOS level input)

The information in this document is subject to change without notice.

Document No. M10070EJ5V0DS00 (5th edition) Date Published January 1997 N Printed in Japan

★ Ordering Information

Part number	Access time (MAX.)	Package	Refresh
μPD42S17805LG5-A50-7JD	50 ns	28-pin plastic TSOP (II)	CAS before RAS self refresh
μPD42S17805LG5-A60-7JD	60 ns	(400 mil)	CAS before RAS refresh
μPD42S17805LG5-A70-7JD	70 ns		RAS only refresh Hidden refresh
μPD42S17805LLE-A50	50 ns	28-pin plastic SOJ	
μPD42S17805LLE-A60	60 ns	(400 mil)	
μPD42S17805LLE-A70	70 ns		
μPD4217805LG5-A50-7JD	50 ns	28-pin plastic TSOP (II)	CAS before RAS refresh
μPD4217805LG5-A60-7JD	60 ns	(400 mil)	RAS only refresh
μPD4217805LG5-A70-7JD	70 ns		Hidden refresh
μPD4217805LLE-A50	50 ns	28-pin plastic SOJ	
μPD4217805LLE-A60	60 ns	(400 mil)	
μPD4217805LLE-A70	70 ns		

Pin Configurations (Marking Side)

Vcc O

I/O1 O-

I/O2 O-

I/O3 O-

I/O4 O-

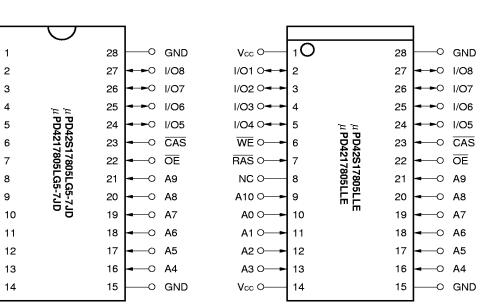
WE O-

RAS O-

NC O-

A10 O-

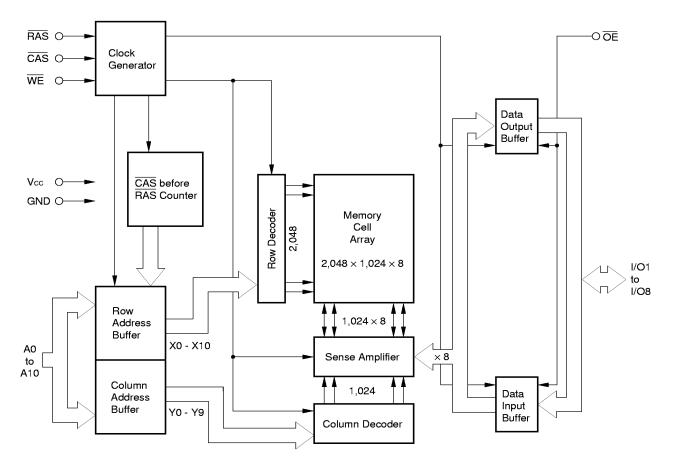
A0 O-


A1 0-

A2 O-

Аз О-

Vcc O-


28-pin Plastic TSOP (II) (400 mil)

A0 to A10	:	Address Inputs
I/O1 to I/O8	:	Data Inputs/Outputs
RAS	:	Row Address Strobe
CAS	:	Column Address Strobe
WE	:	Write Enable
OE	:	Output Enable
Vcc	:	Power Supply
GND	:	Ground
NC	:	No Connection

28-pin Plastic SOJ (400 mil)

Block Diagram

Input/Output Pin Functions

The μ PD42S17805L, 4217805L have input pins \overline{RAS} , \overline{CAS} , \overline{WE} , \overline{OE} , A0 to A10 and input/output pins I/O1 to I/O8.

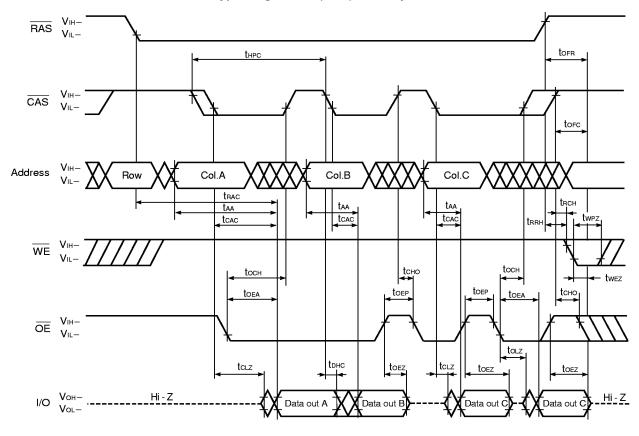
Pin name	Input/Output	Function
RAS (Row address strobe)	Input	RAS activates the sense amplifier by latching a row address and selecting a corresponding word line. It refreshes memory cell array of one line selected by the row address. It also selects the following function. • CAS before RAS refresh
CAS (Column address strobe)	Input	CAS activates data input/output circuit by latching column address and selecting a digit line connected with the sense amplifier.
A0 to A10 (Address inputs)	Input	Address bus. Input total 21-bit of address signal, upper 11-bit and lower 10-bit in sequence (address multiplex method). Therefore, one word is selected from 2,097,152-word by 8-bit memory cell array. In actual operation, latch row address by specifying row address and activating RAS. Then, switch the address bus to column address and activate CAS. Each address is taken into the device when RAS and CAS are activated. Therefore, the address input setup time (t _{ASR} , t _{ASC}) and hold time (t _{RAH} , t _{CAH}) are specified for the activation of RAS and CAS.
WE (Write enable)	Input	Write control signal. Write operation is executed by activating \overline{RAS} , \overline{CAS} and \overline{WE} .
OE (Output enable)	Input	Read control signal. Read operation can be executed by activating \overline{RAS} , \overline{CAS} and \overline{OE} . If \overline{WE} is activated during read operation, \overline{OE} is to be ineffective in the device. Therefore, read operation cannot be executed.
I/O1 to I/O8 (Data inputs/outputs)	Input/Output	8-bit data bus. I/O1 to I/O8 are used to input/output data.

★ Hyper Page Mode (EDO)

The hyper page mode (EDO) is a kind of page mode with enhanced features. The two major features of the hyper page mode (EDO) are as follows.

1. Data output time is extended.

In the hyper page mode (EDO), the output data is held to the next \overline{CAS} cycle's falling edge, instead of the rising edge. For this reason, valid data output time in the hyper page mode (EDO) is extended compared with the fast page mode (= data extend function). In the fast page mode, the data output time becomes shorter as the \overline{CAS} cycle time becomes shorter. Therefore, in the hyper page mode (EDO), the timing margin in read cycle is larger than that of the fast page mode even if the \overline{CAS} cycle time becomes shorter.


2. The CAS cycle time in the hyper page mode (EDO) is shorter than that in the fast page mode.

In the hyper page mode (EDO), due to the data extend function, the \overline{CAS} cycle time can be shorter than in the fast page mode if the timing margin is the same.

Taking a device whose t_{RAC} is 60 ns as an example, the \overline{CAS} cycle time in the fast page mode is 25 ns while that in the fast page mode is 40 ns.

In the hyper page mode (EDO), read (data out) and write (data in) cycles can be executed repeatedly during one RAS cycle. The hyper page mode (EDO) allows both read and write operations during one cycle.

The following shows a part of the hyper page mode (EDO) read cycle. Specifications to be observed are described in the next page.

Hyper Page Mode (EDO) Read Cycle

6

Cautions when using the hyper page mode (EDO)

- 1. \overline{CAS} access should be used to operate the MIN. value.
- 2. To make I/Os to Hi-Z in read cycle, it is necessary to control RAS, CAS, WE, OE as follows. The effective specification depends on the state of each signal.
 - Both RAS and CAS are inactive (at the end of read cycle)
 WE: inactive, OE: active
 toFc is effective when RAS is inactivated before CAS is inactivated.
 toFR is effective when CAS is inactivated before RAS is inactivated.
 The slower of toFc and toFR becomes effective.
 Both RAS and CAS are active or either RAS or CAS is active (in read cycle)
 - WE, OE: inactive toEz is effective.
 Both RAS and CAS are inactive or RAS is active and CAS is inactive (at the end of read cycle)
 WE, OE: active and either tRRH or tRCH must be met twEz and twPz are effective.
 The faster of toEz and twEz becomes effective.
 - The faster of (1) and (2) becomes effective.
- 3. In read cycle, the effective specification depends on the state of \overline{CAS} signal when controlling data output with the \overline{OE} signal.
 - (1) \overline{CAS} : inactive, \overline{OE} : active to is effective.
 - (2) \overline{CAS} , \overline{OE} : active toch is effective.

Electrical Specifications

- All voltages are referenced to GND.
- After power up (Vcc ≥ Vcc(MIN.)), wait more than 100 μs (RAS, CAS inactive) and then, execute eight CAS before RAS or RAS only refresh cycles as dummy cycles to initialize internal circuit.

Absolute Maximum Ratings

Parameter	Symbol	Condition	Rating	Unit
Voltage on any pin relative to GND	V⊤		–0.5 to +4.6	V
Supply voltage	Vcc		–0.5 to +4.6	V
Output current	lo		20	mA
Power dissipation	Po		1	w
Operating ambient temperature	TA		0 to +70	°C
Storage temperature	Tstg		–55 to +125	°C

Caution Exposing the device to stress above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Supply voltage	Vcc		3.0	3.3	3.6	v
High level input voltage	Vін		2.0		Vcc + 0.3	v
Low level input voltage	VIL		-0.3		+0.8	v
Operating ambient temperature	TA		0		70	°C

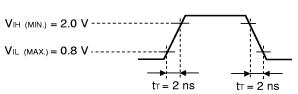
Capacitance (T_A = 25 °C, f = 1 MHz)

Parameter	Symbol	Test condition	MIN.	TYP.	MAX.	Unit
Input capacitance	Cıı	Address			5	рF
	Cı2	RAS, CAS, WE, OE			7	
Data input/output capacitance	Cı/o	I/O			7	pF

\star

DC Characteristics (Recommended operating conditions unless otherwise noted)

	Parameter	Symbol	Test condition		MIN.	MAX.	Unit	Notes
Operating	current	lcc1	RAS, CAS cycling	trac = 50 ns		120	mA	1, 2, 3
			$t_{RC} = t_{RC} (MIN.), Io = 0 mA$	trac = 60 ns		100		
				trac = 70 ns		90		
Standby	µPD42S17805L	lcc2	$\overline{\text{RAS}}, \ \overline{\text{CAS}} \ge V_{\text{IH (MIN.)}}, \ \text{Io} = 0 \ \text{mA}$		0.5	mA		
current			$\overline{RAS}, \overline{CAS} \ge V_{CC} - 0.2 V, I_{O} = 0$	mA		0.15		
	μPD4217805L		$\overline{RAS}, \overline{CAS} \ge V_{IH (MIN.)}, Io = 0 mA$			2.0		
			$\overline{RAS}, \overline{CAS} \ge V_{CC} - 0.2 V, I_{O} = 0$	mA		0.5		
RAS only	refresh current	Іссз	RAS cycling, CAS ≥ VIH (MIN.)	trac = 50 ns		120	mA	1, 2, 3 ,4
			$t_{RC} = t_{RC} (MIN.), Io = 0 mA$	trac = 60 ns		100		
				trac = 70 ns		90		
Operating	current	Icc4	$\overline{RAS} \leq V_{IL (MAX.)}, \overline{CAS} cycling$	trac = 50 ns		100	mA	1, 2, 5
(Hyper pa	ge mode (EDO))		thpc = thpc (MIN.), $Io = 0 mA$	trac = 60 ns		90		
				trac = 70 ns		80		
CAS befo	re RAS	Icc5	RAS cycling	trac = 50 ns		120	mA	1, 2
refresh cu	rrent		$t_{RC} = t_{RC} (MIN.)$, $I_0 = 0 \text{ mA}$	trac = 60 ns		100		
				trac = 70 ns		90		
		Іссь	$\label{eq:cases} \begin{array}{ c c c c } \hline \hline CAS \ before \ \overline{RAS} \ refresh : \\ \hline t_{RC} = 62.5 \ \mu s \\ \hline \overline{RAS}, \ \overline{CAS}: \\ \hline V_{CC} - 0.2 \ V \leq V_{IH} \leq V_{IH} \ (MAX.) \\ \hline 0 \ V \leq V_{IL} \leq 0.2 \ V \end{array}$	tras ≤ 300 ns		400	μA	1, 2
			Standby: RAS, CAS ≥ Vcc – 0.2 V Address: Vi⊩ or Vi∟ WE, OE: Vi⊩ Io = 0 mA	tras ≤ 1 μ s		450	μΑ	1, 2
CAS befo self refres (only for t		Icc7	$\label{eq:rescaled} \begin{array}{ c c c } \hline \hline RAS, \ \hline CAS : \\ t_{RASS} = 5 \ ms \\ V_{CC} - 0.2 \ V \leq V_{IH} \leq V_{IH \ (MAX.)} \\ 0 \ V \leq V_{IL} \leq 0.2 \ V \\ I_O = 0 \ mA \end{array}$			200	μΑ	2
Input leak	age current	lı (l.)	VI = 0 to 3.6 V All other pins not under test = 0 V		-5	+5	μA	
Output lea	akage current	lo (L)	Vo = 0 to 3.6 V Output is disabled (Hi-Z)		-5	+5	μA	
High level	output voltage	Vон	lo = -2.0 mA		2.4		V	
Low level	output voltage	Vol	lo = +2.0 mA			0.4	V	


Notes 1. Icc1, Icc3, Icc4, Icc5 and Icc6 depend on cycle rates (trc and tHPc).

- 2. Specified values are obtained with outputs unloaded.
- 3. Icc1 and Icc3 are measured assuming that address can be changed once or less during $\overline{RAS} \leq V_{\text{IL (MAX.)}}$ and $\overline{CAS} \geq V_{\text{IH (MIN.)}}$.
- 4. Icc3 is measured assuming that all column address inputs are held at either high or low.
- 5. Icc4 is measured assuming that all column address inputs are switched only once during each hyper page (EDO) cycle.

* AC Characteristics (Recommended Operating Conditions unless otherwise noted)

AC Characteristics Test Conditions

(1) Input timing specification

(2) Output timing specification

Voh (MIN.) = 2.0 V VOL (MAX.) = 0.8 V

(3) Output load condition

Common to Read, Write, Read Modify Write Cycle

			trac =	50 ns	trac =	60 ns	trac =	70 ns		
Parameter		Symbol	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	Unit	Notes
Read / Write cycle time		tRC	84	-	104	-	124	-	ns	
RAS precharge time		tRP	30	-	40	-	50	-	ns	
CAS precharge time		tCPN	8	-	10	-	10	-	ns	
RAS pulse width		tras	50	10,000	60	10,000	70	10,000	ns	1
CAS pulse width		tcas	8	10,000	10	10,000	12	10,000	ns	
RAS hold time		tвsн	10	-	10	-	12	-	ns	
CAS hold time		tcsн	38	-	40	-	50	-	ns	
RAS to CAS delay time		trco	11	37	14	45	14	52	ns	2
RAS to column address delay time		trad	9	25	12	30	12	35	ns	2
CAS to RAS precharge time		tcrp	5	-	5	-	5	-	ns	3
Row address setup time		tasr	0	-	0	-	0	-	ns	
Row address hold time		t RAH	7	-	10	-	10	-	ns	
Column address setup time		tasc	0	-	0	-	0	-	ns	
Column address hold time		tсан	7	-	10	-	12	-	ns	
OE lead time referenced to RAS		toes	0	-	0	-	0	-	ns	
CAS to data setup time		tclz	0	-	0	-	0	-	ns	
OE to data setup time		to∟z	0	-	0	-	0	-	ns	
OE to data delay time		toed	10	-	13	-	15	-	ns	
Transition time (rise and fall)		t⊤	1	50	1	50	1	50	ns	
Refresh time	µPD42S17805L	tref	_	128	-	128	-	128	ms	4
	μPD4217805L		_	32	-	32	Ι	32	ms	

10

Notes 1. In \overline{CAS} before \overline{RAS} refresh cycles, tras (MAX.) is 100 μ s.

If 10 μ s < t_{RAS} < 100 μ s, RAS precharge time for CAS before RAS self refresh (t_{RPS}) is applied.

2. For read cycles, access time is defined as follows:

Input conditions	Access time	Access time from \overline{RAS}
trad \leq trad (max.) and trcd \leq trcd (max.)	trac (max.)	trac (MAX.)
trad > trad (max.) and trcd \leq trcd (max.)	taa (max.)	trad + taa (max.)
trcd > trcd (max.)	tcac (MAX.)	trcd + tcac (max.)

trad (MAX.) and trad (MAX.) are specified as reference points only; they are not restrictive operating parameters. They are used to determine which access time (trad, taa or tcad) is to be used for finding out when output data will be available. Therefore, the input conditions trad \geq trad (MAX.) and trad \ge trad (MAX.) will not cause any operation problems.

- 3. tCRP (MIN.) requirement is applied to RAS, CAS cycles.
- 4. This specification is applied only to the μ PD42S17805L.

Read Cycle

Deventer				trac =	trac = 60 ns		trac = 70 ns		Nister
Parameter	Symbol	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	Unit	Notes
Access time from RAS	trac	-	50	-	60	-	70	ns	1
Access time from CAS	tcac	-	13	-	15	-	18	ns	1
Access time from column address	taa	-	25	-	30	-	35	ns	1
Access time from OE	toea	-	13	-	15	-	18	ns	
Column address lead time referenced to RAS	t RAL	25	-	30	-	35	-	ns	
Read command setup time	trcs	0	-	0	-	0	_	ns	
Read command hold time referenced to RAS	tввн	0	-	0	-	0	_	ns	2
Read command hold time referenced to CAS	tясн	0	-	0	-	0	_	ns	2
Output buffer turn-off delay time from OE	toez	0	10	0	13	0	15	ns	3
CAS hold time to OE	tсно	5	-	5	-	5	-	ns	4

Notes 1. For read cycles, access time is defined as follows:

Input conditions	Access time	Access time from RAS
trad \leq trad (max.) and trcd \leq trcd (max.)	trac (max.)	trac (MAX.)
trad > trad (max.) and trcd \leq trcd (max.)	taa (max.)	trad + taa (max.)
trcd > trcd (max.)	tcac (max.)	trcd + tcac (max.)

trad (MAX.) and trade (MAX.) are specified as reference points only; they are not restrictive operating parameters. They are used to determine which access time (trade, tak or teac) is to be used for finding out when output data will be available. Therefore, the input conditions trad \geq trad (MAX.) and trade \geq trade (MAX.) will not cause any operation problems.

- 2. Either tRCH (MIN.) or tRRH (MIN.) should be met in read cycles.
- toez(MAX.) defines the time when the output achieves the condition of Hi-Z and is not referenced to VoH or VoL.
- **4.** WE: inactive (in read cycle)
 - \overline{CAS} : inactive, \overline{OE} : active tcho is effective. \overline{CAS} , \overline{OE} : active toch is effective.

Write Cycle

Parameter		trac = 50 ns		trac = 60 ns		trac = 70 ns		Unit	Notes
Parameter	Symbol	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	Unit	Notes
WE hold time referenced to CAS	twcн	7	-	10	-	10	-	ns	1
WE pulse width	twp	8	-	10	-	10	-	ns	1
WE lead time referenced to RAS	trw∟	10	-	10	-	12	-	ns	
WE lead time referenced to CAS	tcw∟	8	-	10	-	12	-	ns	
WE setup time	twcs	0	-	0	_	0	-	ns	2
OE hold time	tоен	0	-	0	_	0	-	ns	
Data-in setup time	tos	0	_	0	_	0	-	ns	3
Data-in hold time	tон	7	-	10	-	10	-	ns	3

Notes 1. twp (MIN.) is applied to late write cycles or read modify write cycles. In early write cycles, twch (MIN.) should be met.

2. If twcs ≥ twcs (MIN.), the cycle is an early write cycle and the data out will remain Hi-Z through the entire cycle.

3. tDS (MIN.) and tDH (MIN.) are referenced to the CAS falling edge in early write cycles. In late write cycles and read modify write cycles, they are referenced to the WE falling edge.

Read Modify Write Cycle

Parameter		trac = 50 ns		trac = 60 ns		trac = 70 ns		Unit	Notes
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		Notes
Read modify write cycle time	trwc	107	-	133	-	157	-	ns	
RAS to WE delay time	trwo	64	-	77	-	89	-	ns	1
CAS to WE delay time	tcwp	27	-	32	-	37	-	ns	1
Column address to WE delay time	tawd	39	-	47	-	54	-	ns	1

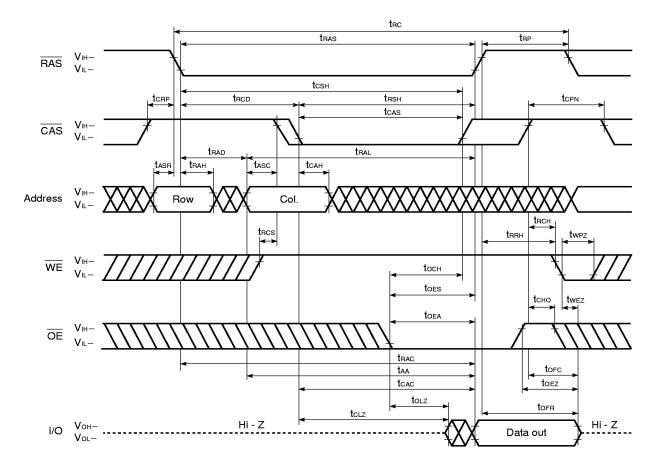
Note 1. If twcs ≥ twcs (MIN.), the cycle is an early write cycle and the data out will remain Hi-Z through the entire cycle. If tRwD ≥ tRWD (MIN.), tcwD ≥ tcwD (MIN.), tAWD ≥ tAWD (MIN.) and tcPWD ≥ tcPWD (MIN.), the cycle is a read modify write cycle and the data out will contain data read from the selected cell. If neither of the above conditions is met, the state of the data out is indeterminate.

Hyper Page Mode (EDO)

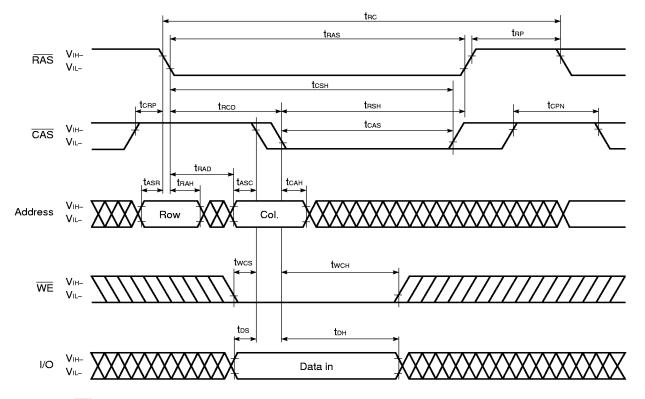
Deveneter	Symbol	trac = 50 ns		trac = 60 ns		trac = 70 ns		Unit	Natao
Parameter	Symbol	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	Unit	Notes
Read / Write cycle time	tнрс	20	-	25	-	30	-	ns	1
RAS pulse width	trasp	50	125,000	60	125,000	70	125,000	ns	
CAS pulse width	thcas	8	10,000	10	10,000	12	10,000	ns	
CAS precharge time	tcp	8	-	10	-	10	-	ns	
Access time from CAS precharge	tacp	-	30	_	35	_	40	ns	
CAS precharge to WE delay time	tcpwd	41	-	52	-	59	-	ns	2
RAS hold time from CAS precharge	tвнср	30	-	35	-	40	-	ns	
Read modify write cycle time	tHPRWC	52	-	66	-	75	-	ns	
Data output hold time	tонс	5	-	5	-	5	-	ns	
OE to CAS hold time	tосн	5	-	5	-	5	-	ns	3
OE precharge time	toep	5	-	5	-	5	-	ns	
Output buffer turn-off delay from \overline{WE}	twez	0	10	0	13	0	15	ns	4,5
WE pulse width	twpz	8	-	10	_	10	_	ns	5
Output buffer turn-off delay from RAS	tofr	0	10	0	13	0	15	ns	4,5
Output buffer turn-off delay from CAS	torc	0	10	0	13	0	15	ns	4,5

Notes 1. theorem (MIN.) is applied to \overline{CAS} access.

- 2. If twos ≥ twos (MIN.), the cycle is an early write cycle and the data out will remain Hi-Z through the entire cycle. If tRWD ≥ tRWD (MIN.), tCWD ≥ tCWD (MIN.), tAWD ≥ tAWD (MIN.) and tCPWD ≥ tCPWD (MIN.), the cycle is a read modify write cycle and the data out will contain data read from the selected cell. If neither of the above conditions is met, the state of the data out is indeterminate.
- 3. WE: inactive (in read cycle) CAS: inactive, OE: active toho is effective. CAS, OE: active toch is effective.
- 4. topic (MAX.), topic (MAX.) and twez (MAX.) define the time when the output achieves the conditions of Hi-Z and is not referenced to VoH or VoL.
- 5. To make I/Os to Hi-Z in read cycle, it is necessary to control RAS, CAS, WE, OE as follows. The effective specification depends on state of each signal.
 - Both RAS and CAS are inactive (at the end of the read cycle) WE: inactive, OE: active torc is effective when RAS is inactivated before CAS is inactivated. torr is effective when CAS is inactivated before RAS is inactivated. The slower of torc and torr becomes effective.
 Both RAS and CAS are active or either RAS or CAS is active (in read cycle) WE, OE: inactive torz is effective.
 - Both $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$ are inactive or $\overline{\text{RAS}}$ is active and $\overline{\text{CAS}}$ is inactive (at the end of read cycle) $\overline{\text{WE}}$, $\overline{\text{OE}}$: active and either transformer track must be met twee and twee are effective.
 - The faster of toez and twez becomes effective.

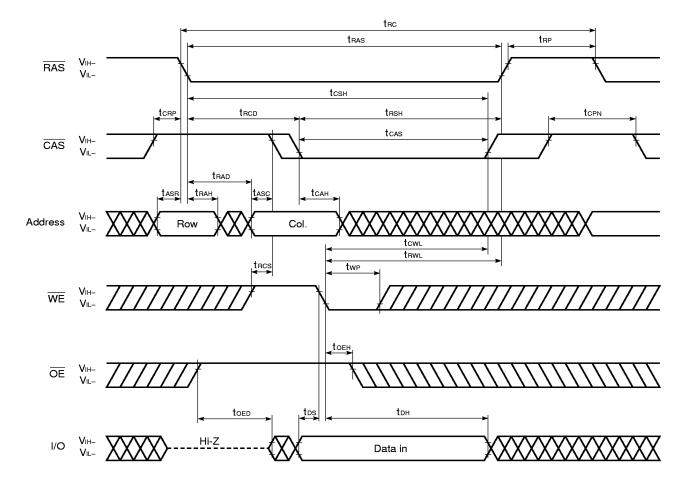

The faster of (1) and (2) becomes effective.

Refresh Cycle

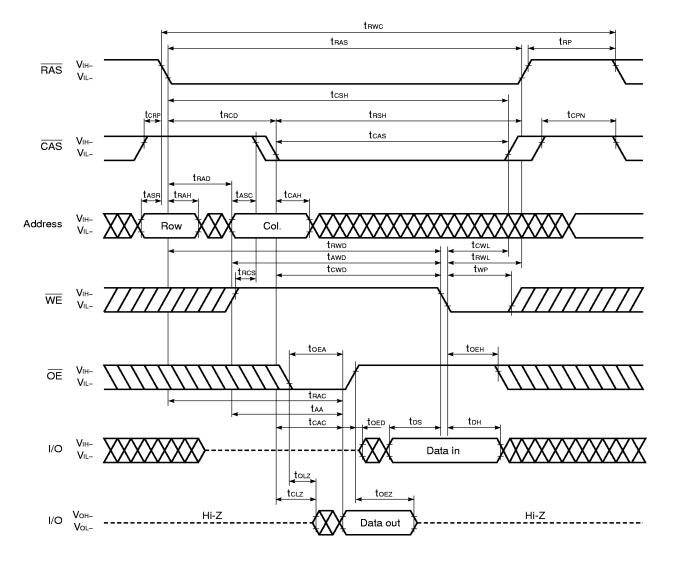

Parameter		trac = 50 ns		trac = 60 ns		trac = 70 ns		Unit	Notes
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	Unit	notes
CAS setup time	tcsr	5	-	5	Ι	5	-	ns	
CAS hold time (CAS before RAS refresh)	tснв	10	-	10	Ι	10	-	ns	
RAS precharge CAS hold time	tRPC	5	-	5	Ι	5	-	ns	
RAS pulse width (CAS before RAS self refresh)	trass	100	-	100	_	100	-	μs	1
RAS precharge time (CAS before RAS self refresh)	tRPS	90	-	110	-	130	-	ns	1
CAS hold time (CAS before RAS self refresh)	tснs	-50	-	-50	_	-50	-	ns	1
WE setup time	twsR	10	-	10	_	10	-	ns	
WE hold time	twнв	15	-	15	-	15	-	ns	

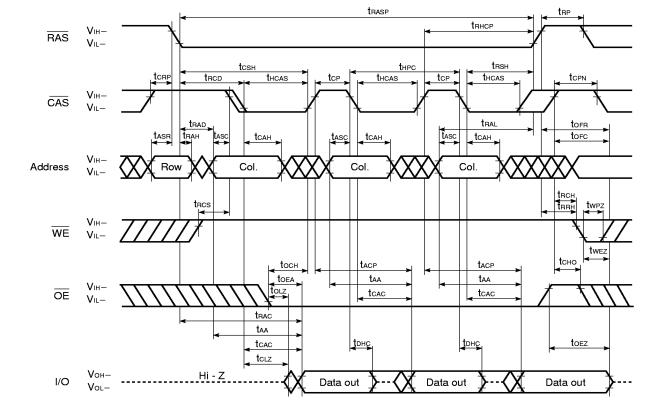
Note 1. This specification is applied only to the μ PD42S17805L.

Read Cycle

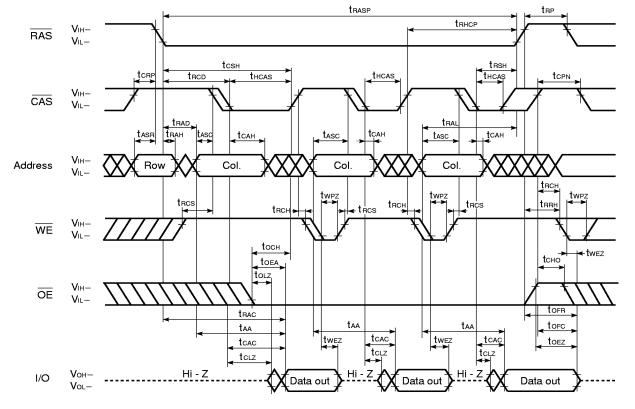


Early Write Cycle

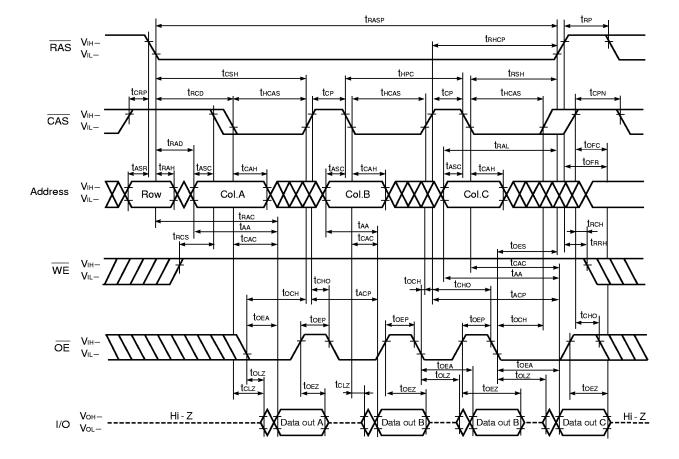



Remark OE: Don't care

Late Write Cycle

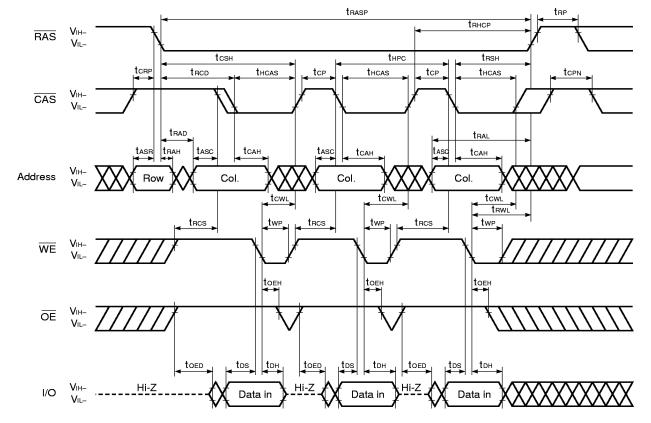


Read Modify Write Cycle



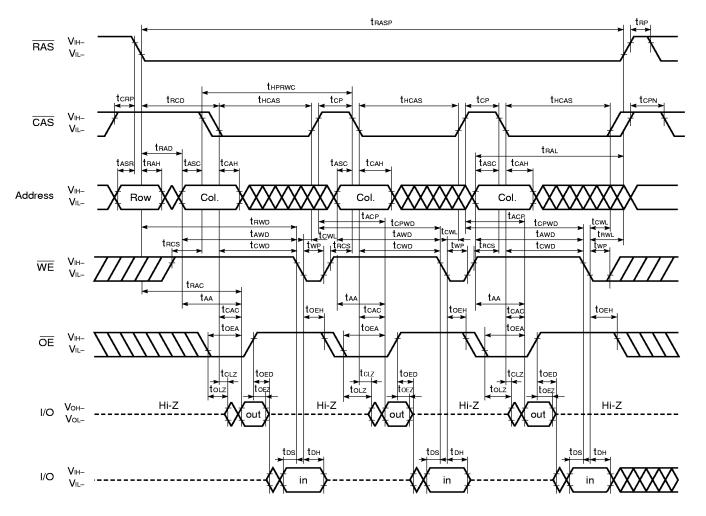
Hyper Page Mode (EDO) Read Cycle

Hyper Page Mode (EDO) Read Cycle (WE Control)

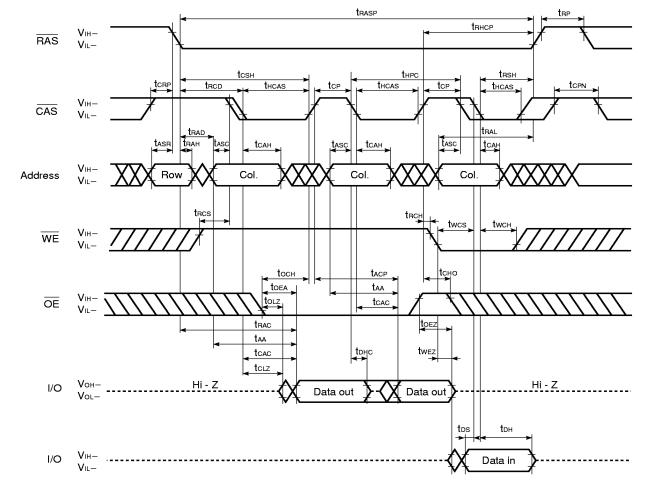


Hyper Page Mode (EDO) Read Cycle (OE Control)

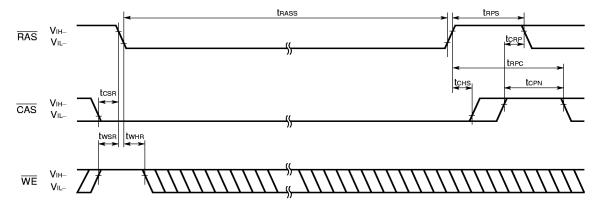
trasp tRF VIH**t**RHCP RAS VILtсsн tнрс trsh torr trcd thcas thcas tсР tHCAS tcp tcpn VIH-CAS VIL**t**RAL trad **t**RAH tasc tasc tasr tCAH **t**CAH tasc tCAH VIH-Address Col. Col. Row Col. VILtwcs twcн twcs twcн twcs twcн WE VIH-VILtos tos tos tон tон tон VIH-I/O Data in Data in Data in VIL-


Hyper Page Mode (EDO) Early Write Cycle

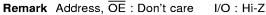
Remarks 1. OE: Don't care


Hyper Page Mode (EDO) Late Write Cycle

Remark In the hyper page mode (EDO), read, write and read modify write cycles are available for each of the consecutive CAS cycles within the same RAS cycle.

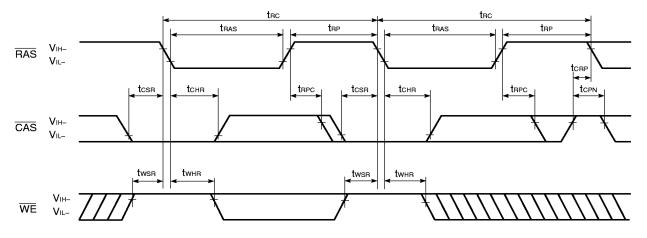


Hyper Page Mode (EDO) Read Modify Write Cycle


Remark In the hyper page mode (EDO), read, write and read modify write cycles are available for each of the consecutive CAS cycles within the same RAS cycle.

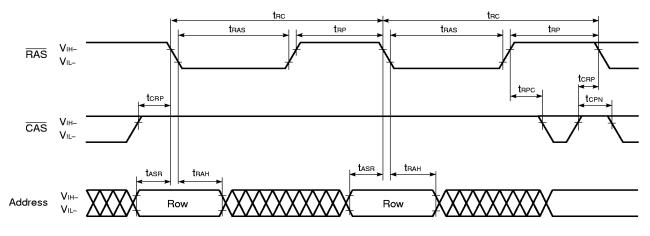
Hyper Page Mode (EDO) Read and Write Cycle

CAS Before **RAS** Self Refresh Cycle (Only for the μ PD42S17805L)

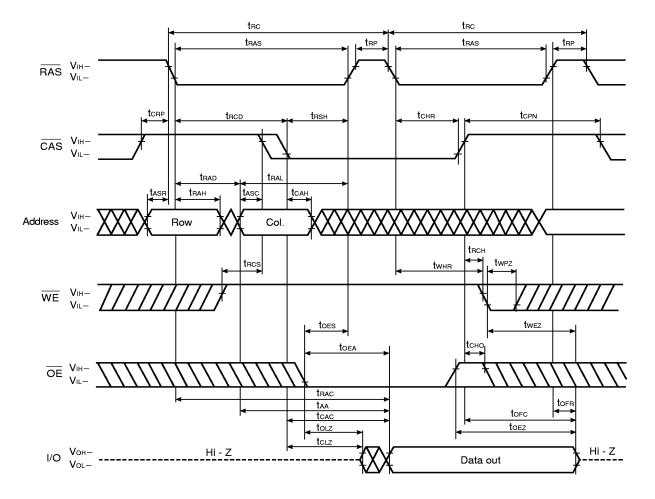

Cautions on Use of CAS Before RAS Self Refresh

 \overline{CAS} before \overline{RAS} self refresh can be used independently when used in combination with distributed \overline{CAS} before \overline{RAS} long refresh; However, when used in combination with burst \overline{CAS} before \overline{RAS} long refresh or with long \overline{RAS} only refresh (both distributed and burst), the following cautions must be observed.

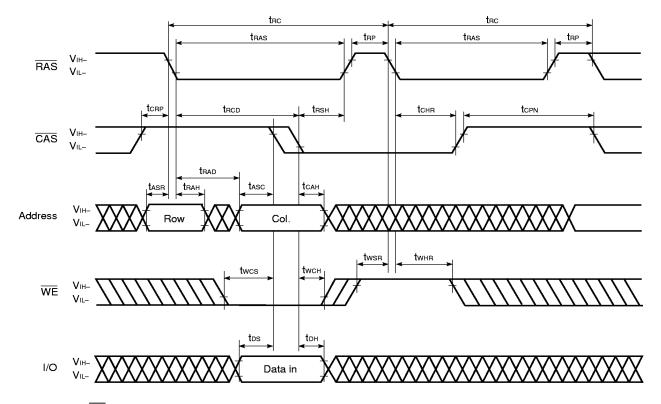
- (1) Normal Combined Use of CAS Before RAS Self Refresh and Burst CAS Before RAS Long Refresh When CAS before RAS self refresh and burst CAS before RAS long refresh are used in combination, please perform CAS before RAS refresh 2,048 times within a 32 ms interval just before and after setting CAS before RAS self refresh.
- (2) Normal Combined Use of CAS Before RAS Self Refresh and Long RAS Only Refresh When CAS before RAS self refresh and RAS only refresh are used in combination, please perform RAS only refresh 2,048 times within a 32 ms interval just before and after setting CAS before RAS self refresh.
- (3) If tRASS (MIN.) is not satisfied at the beginning of CAS before RAS self refresh cycles (tRAS < 100 μs), CAS before RAS refresh cycles will be executed one time.
 If 10 μs < tRAS < 100 μs, RAS precharge time for CAS before RAS self refresh (tRPS) is applied.
 And refresh cycles (2,048/128 ms) should be met.


For details, please refer to How to use DRAM User's Manual.

CAS Before RAS Refresh Cycle

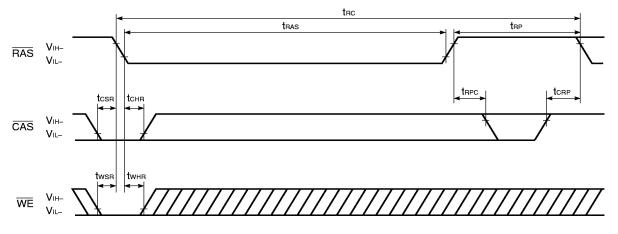

Remark Address, OE: Don't care I/O: Hi-Z

RAS Only Refresh Cycle



Remark WE, OE: Don't care I/O: Hi-Z

Hidden Refresh Cycle (Read)



Hidden Refresh Cycle (Write)

Remark OE: Don't care

Test Mode Set Cycle (WE, CAS Before RAS Refresh Cycle)

Remark Address, OE: Don't care I/O: Hi-Z

Test Mode

By using the test mode, the test time can be reduced. The reason for this is that, the memory emulates the \times 16-bit organization during test mode. Don't care about the input levels of the \overline{CAS} input A0.

(1) Setting the mode

Executing the test mode cycle (WE, CAS before RAS refresh cycle) sets the test mode.

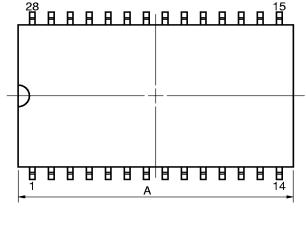
(2) Write/read operation

When either a "0" or a "1" is written to the input pin in test mode, this data is written to 16 bits of memory cell.

Next, when the data is read from the output pin at the same address, the cell can be checked.

Output = "1": Normal write (all memory cells) Output = "0": Abnormal write

(3) Refresh

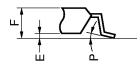

Refresh in the test mode must be performed with the \overline{RAS} / \overline{CAS} cycle or with the \overline{WE} , \overline{CAS} before \overline{RAS} refresh cycle. The \overline{WE} , \overline{CAS} before \overline{RAS} refresh cycle use the same counter as the \overline{CAS} before \overline{RAS} refresh's internal counter.

(4) Mode Cancellation

The test mode is cancelled by executing one cycle of RAS only refresh cycle or CAS before RAS refresh cycle.

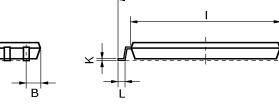
Package Drawings

28PIN PLASTIC TSOP(II) (400 mil)



1676

זרחר


ורחר

detail of lead end

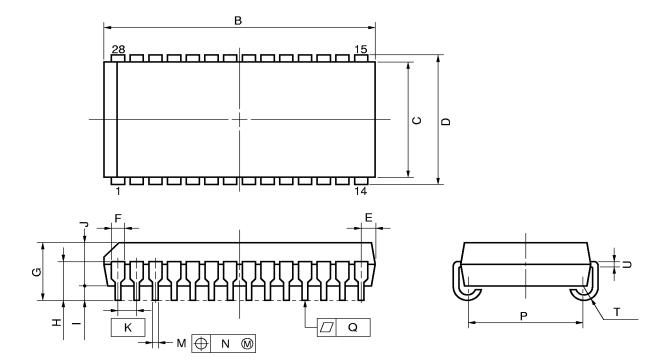
Н

.1

ΝΟΤΕ

C D⊕

м ₪


ഗ

Each lead centerline is located within 0.21 mm (0.009 inch) of its true position (T.P.) at maximum material condition.

□ N

ITEM	MILLIMETERS	INCHES
A	18.63 MAX.	0.734 MAX.
В	1.075 MAX.	0.043 MAX.
С	1.27 (T.P.)	0.050 (T.P.)
D	$0.42\substack{+0.08\\-0.07}$	0.017±0.003
E	0.1±0.05	0.004±0.002
F	1.2 MAX.	0.048 MAX.
G	0.97	0.038
Н	11.76±0.2	0.463±0.008
I	10.16±0.1	0.400±0.004
J	0.8±0.2	$0.031\substack{+0.009\\-0.008}$
к	$0.145\substack{+0.025\\-0.015}$	0.006±0.001
L	0.5±0.1	$0.020\substack{+0.004\\-0.005}$
М	0.21	0.009
N	0.10	0.004
Р	$3^{\circ}^{+7}_{-3^{\circ}}$	$3^{\circ}^{+7^{\circ}}_{-3^{\circ}}$
		S28G5-50-7JD3

28 PIN PLASTIC SOJ (400 mil)

ΝΟΤΕ

Each lead centerline is located within 0.12 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

		P28LE-400A1
ITEM	MILLIMETERS	INCHES
В	$18.67_{-0.35}^{+0.2}$	0.735 ^{+0.008} _{-0.013}
С	10.16	0.400
D	11.18±0.2	0.440 ^{+0.008} _{-0.007}
Е	1.08±0.15	0.043 ^{+0.006} _{-0.007}
F	0.74	0.029
G	3.5±0.2	0.138 ^{+0.008} _{-0.007}
Н	2.545±0.2	0.100±0.008
I	0.8 MIN.	0.031 MIN.
J	2.6	0.102
к	1.27 (T.P.)	0.050 (T.P.)
М	0.40±0.10	$0.016^{+0.004}_{-0.005}$
Ν	0.12	0.005
Р	9.40±0.20	0.370 ^{+0.008} _{-0.007}
Q	0.10	0.004
Т	R 0.85	R 0.033
U	0.20 ^{+0.10} -0.05	0.008+0.004

\star

Recommended Soldering Conditions

The following conditions (see tables below and next page) must be met for soldering conditions of the μ PD42S17805L, 4217805L.

For more details, refer to our document "SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL" (C10535E).

Please consult with our sales offices in case other soldering process is used, or in case the soldering is done under different conditions.

Types of Surface Mount Device

μPD42S17805LG5-7JD, 4217805LG5-7JD: 28-pin plastic TSOP (II) (400 mil)

Soldering process	Soldering conditions	Symbol
Infrared ray reflow	Peak temperature of package surface: 235 °C or lower, Reflow time: 30 seconds or less (210 °C or higher), Number of reflow processes: MAX. 3 Exposure limit: 7 days ^{Note}	IR35-107-3
VPS	(10 hours pre-baking is required at 125 °C afterwards) Peak temperature of package: 215 °C or lower, Reflow time: 40 seconds or less (200 °C or higher), Number of reflow processes: MAX. 3 Exposure limit: 7 days ^{Note} (10 hours pre-baking is required at 125 °C afterwards)	VP15-107-3
Partial heating method	Terminal temperature: 300 °C or lower, Time: 3 seconds or lower (Per side of the package).	-

Note Exposure limit before soldering after dry-pack package is opened. Storage conditions: 25 °C and relative humidity at 65 % or less.

Caution Do not apply more than one soldering method at any one time, except for "Partial heating method".

μ PD42S17805LLE, 4217805LLE: 28-pin plastic SOJ (400 mil)

Soldering process	Soldering conditions	Symbol
Infrared ray reflow	Peak temperature of package surface: 235 °C or lower, Reflow time: 30 seconds or less (210 °C or higher), Number of reflow processes: MAX. 3 Exposure limit: 7 days ^{Note} (20 hours pre-baking is required at 125 °C afterwards)	IR35-207-3
VPS	Peak temperature of package: 215 °C or lower, Reflow time: 40 seconds or less (200 °C or higher), Number of reflow processes: MAX. 3 Exposure limit: 7 days ^{Note} (20 hours pre-baking is required at 125 °C afterwards)	VP15-207-3
Partial heating method	Terminal temperature: 300 °C or lower, Time: 3 seconds or less (Per side of the package).	_

Note Exposure limit before soldering after dry-pack package is opened. Storage conditions: 25 °C and relative humidity at 65 % or less.

Caution Do not apply more than one soldering method at any one time, except for "Partial heating method".