PRELIMINARY PRODUCT INFORMATION

GaAs INTEGRATED CIRCUIT

uPG2158T5K

L,S-BAND SPDT SWITCH

DESCRIPTION

The uPG2158T5K is a GaAs MMIC for L,S-band SPDT (Single Pole Double Throw) which were designed for mobile phone and the another L,S-band applications.

This device can operate frequency from 0.05GHz to 3.0GHz,, having the low insertion loss and high isolation.

This device is housed in a 6-pin TSON(Thin Small Out-line Non-Leaded) package. And this package is able to high-density surface mounting.

FEATURES

Low Insertion Loss
 : Lins1 = 0.40dB TYP.@ f = 0.05 to 0.5GHz, Vcont(H) = 2.7V, Vcont(L) = 0V
 : Lins2 = 0.40dB TYP.@ f = 0.5 to 1.0GHz, Vcont(H) = 2.7V, Vcont(L) = 0V

: Lins2 = 0.40dB TYP.@ f = 0.5 to 1.0GHz, Vcont(H) = 2.7V, Vcont(L) = 0V : Lins3 = 0.45dB TYP.@ f = 1.0 to 2.0GHz, Vcont(H) = 2.7V, Vcont(L) = 0V : Lins4 = 0.47dB TYP.@ f = 2.0 to 2.5GHz, Vcont(H) = 2.7V, Vcont(L) = 0V : Lins5 = 0.53dB TYP.@ f = 2.5 to 3.0GHz, Vcont(H) = 2.7V, Vcont(L) = 0V

• High Isolation : ISL1 = 27dB TYP. @ f = 0.05 to 0.5GHz, Vcont(H) = 2.7V, Vcont(L) = 0V

: ISL2 = 27dB TYP. @ f = 0.5 to 1.0GHz, $V_{cont(H)}$ = 2.7V, $V_{cont(L)}$ = 0V : ISL3 = 19dB TYP. @ f = 1.0 to 2.0GHz, $V_{cont(H)}$ = 2.7V, $V_{cont(L)}$ = 0V : ISL4 = 17dB TYP. @ f = 2.0 to 2.5GHz, $V_{cont(H)}$ = 2.7V, $V_{cont(L)}$ = 0V : ISL5 = 17dB TYP. @ f = 2.5 to 3.0GHz, $V_{cont(H)}$ = 2.7V, $V_{cont(L)}$ = 0V

• Handling Power : Pin (1dB) = +30.5.0dBm TYP.@ f = 0.5 to 3.0GHz, Vcont(H) = 2.7V, Vcont(L) = 0V

: P_{in} (0.1dB) = +29.0dBm TYP.@ f = 0.5 to 3.0GHz, $V_{cont(H)}$ = 2.7V, $V_{cont(L)}$ = 0V

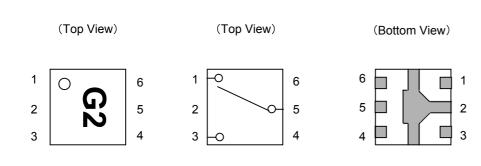
• High-density surface mounting : 6-pin TSON package (1.0 × 1.0 × 0.4 mm)

APPLICATION

- · L,S-band digital cellular or cordless telephone
- W-LAN, WLL and Bluetooth[™] etc.

ORDERING INFORMATION

Part Number	Package	Marking	Supplying Form
uPG2158T5K-E2-A	6-pin TSON (1010)	G2	TBD


Remark To order evaluation samples, contact your nearby sales office.

Part number for sample order: uPG2158T5K

Caution Electro-static sensitive devices

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

PIN CONNECTIONS AND INTERNAL BLOCK DIAGRAM

Pin No.	Pin Name	
1	OUTPUT1	
2	GND	
3	OUTPUT2	
4	Vcont2	
5	INPUT	
6	Vcont1	

SW TRUTH TABLE

Vcont1	Vcont2	INPUT-OUTPUT1	INPUT-OUTPUT2
Low	High	High OFF	
High	Low	ON	OFF

ASOLUTE MAXIMUM RATINGS (Unless otherwise specified, T_A = +25°C)

Parameter	Symbol	Ratings	Unit
Switch Control Voltage	Vcont	+6.0 ^{Note}	V
Input Power	Pin	+31	dBm
Operating Ambient Temperature	TA	-45 to +85	°C
Storage Temperature	T _{stg}	-55 to +150	°C

Note $|V_{cont1} - V_{cont2}| \leq 6.0V$

RECOMMENDED OPERATING RANGE (Unless otherwise specified, TA = +25°C)

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Switch Control Voltage (H)	Vcont (H)	1.8	2.7	5.3	V
Switch Control Voltage (L)	Vcont (L)	-0.2	0	0.2	V

ELECTRICAL CHARACTERISTICS

($T_A = +25^{\circ}C$, $V_{cont(H)} = 2.7V$, $V_{cont(L)} = 0V$, DC cut capacitors = 56pF, Unless otherwise specified)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Insertion Loss1	Lins1	f = 0.05 to 0.5GHz ^{Note1}	-	0.40	0.45	dB
Insertion Loss2	Lins2	f = 0.5 to 1.0GHz	-	0.40	0.45	dB
Insertion Loss3	Lins3	f = 1.0 to 2.0GHz	-	0.45	0.50	dB
Insertion Loss4	Lins4	f = 2.0 to 2.5GHz	-	0.47	0.55	dB
Insertion Loss5	Lins5	f = 2.5 to 3.0GHz	-	0.53	0.60	dB
Isolation1	ISL1	f = 0.05 to 0.5GHz ^{Note1}	23	27	-	dB
Isolation2	ISL2	f = 0.5 to 1.0GHz	23	27	-	dB
Isolation3	ISL3	f = 1.0 to 2.0GHz	16	19	-	dB
Isolation4	ISL4	f = 2.0 to 2.5GHz	14	17	-	dB
Isolation5	ISL5	f = 2.5 to 3.0GHz	14	17	-	dB
Input Return Loss1	RLin1	f = 0.05 to 0.5GHz ^{Note1}	15	20	-	dB
Input Return Loss2	RLin2	f = 0.5 to 3.0GHz	15	20	-	dB
Output Return Loss1	RLout1	f = 0.05 to 0.5GHz ^{Note1}	15	20	-	dB
Output Return Loss2	RLout2	f = 0.5 to 3.0GHz	15	20	-	dB
0.1dB Loss Compression	Pin (0.1dB)	f = 2.0GHz/2.5GHz	+26.0	+29.0	-	dBm
Input Power ^{Note2}		f = 0.5 TO 3.0GHz	-	+29.0	-	dBm
1dB Loss Compression Input Power ^{Note3}	Pin (1dB)	f = 0.5 to 3.0GHz	-	+30.5	-	dBm
2nd Harmonics	2fo	f = 2.0GHz/2.5GHz, P _{in} =+20dBm	65	75	-	dBc
3rd Harmonics	3fo	f = 2.0GHz/2.5GHz, P _{in} =+20dBm	65	75	-	dBc
Input Intercept Point	IIP3	f = 0.5 to 3.0GHz, 2tone 5MHz spacing	-	+60	-	dBm
Switch Control Current	Icont		-	0.2	20	uA
Switch Control Speed	tsw	50% CTL to 90/10%	-	50	500	ns

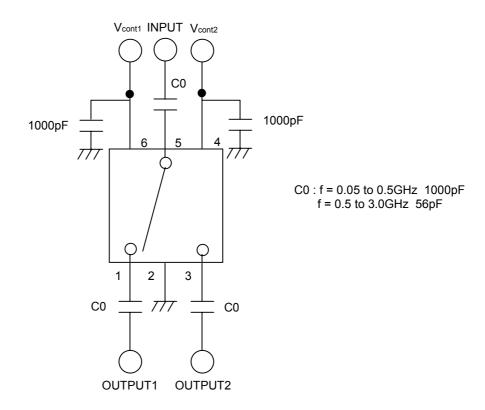
Note1. DC cut capacitors = 1000pF 0.05 to 0.5GHz

Note2. Pin (0.1dB) is measured the input power level when the insertion loss increases more 0.1dB than that of linear range.

Note3. Pin (1dB) is measured the input power level when the insertion loss increases more 1dB than that of linear range.

ELECTRICAL CHARACTERISTICS

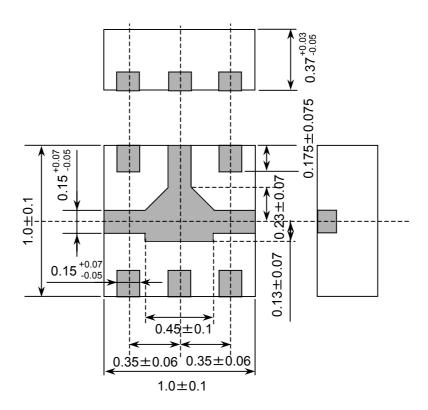
(TA = +25°C, Vcont(H) = 1.8V, Vcont(L) = 0V,DC cut capacitors = 56pF,Unless otherwise specified)


Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Insertion Loss6	Lins6	f = 0.05 to 0.5GHz ^{Note1}	-	0.40	0.46	dB
Insertion Loss7	Lins7	f = 0.5 to 1.0GHz	-	0.40	0.47	dB
Insertion Loss8	Lins8	f = 1.0 to 2.0GHz	-	0.46	0.52	dB
Insertion Loss9	Lins9	f = 2.0 to 2.5GHz	i	0.48	0.57	dB
Insertion Loss10	Lins10	f = 2.5 to 3.0GHz	ı	0.54	0.62	dB
Isolation6	ISL6	f = 0.05 to 0.5GHz ^{Note1}	23	27	-	dB
Isolation7	ISL7	f = 0.5 to 1.0GHz	23	27	-	dB
Isolation8	ISL8	f = 1.0 to 2.0GHz	16	19	-	dB
Isolation9	ISL9	f = 2.0 to 2.5GHz	14	17	-	dB
Isolation10	ISL10	f = 2.5 to 3.0GHz	14	17	-	dB
Input Return Loss1	RLin1	f = 0.05 to 0.5GHz ^{Note1}	15	20	-	dB
Input Return Loss2	RLin2	f = 0.5 to 3.0GHz	15	20	-	dB
Output Return Loss1	RLout1	f = 0.05 to 0.5GHz ^{Note1}	15	20	-	dB
Output Return Loss2	RLout2	f = 0.5 to 3.0GHz	15	20	-	dB
0.1dB Loss Compression	Pin (0.1dB)	f = 2.0GHz/2.5GHz	+19.0	+22.0	-	dBm
Input Power ^{Note2}		f = 0.5 TO 3.0GHz	-	+22.0	-	dBm
1dB Loss Compression Input Power ^{Note3}	Pin (1dB)	f = 0.5 to 3.0GHz	-	+25.0	-	dBm
Switch Control Current	Icont		-	0.2	20	uA
Switch Control Speed	tsw	50% CTL to 90/10%	-	50	500	ns

Note1. DC cut capacitors = 1000pF 0.05 to 0.5GHz

Note2. Pin (0.1dB) is measured the input power level when the insertion loss increases more 0.1dB than that of linear range.

Note3. Pin (1dB) is measured the input power level when the insertion loss increases more 1dB than that of linear range.


EVALUATION CIRCUIT

The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.

PACKAGE DIMENSIONS

6-PIN TSON (UNIT: mm)

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your nearby sales office.

Soldering Method	Soldering Conditions		Condition Symbol
Infrared Reflow	Peak temperature (package surface temperature) Time at peak temperature Time at temperature of 220°C or higher Preheating time at 120 to 180°C Maximum number of reflow processes Maximum chlorine content of rosin flux (% mass)	: 260°C or below : 10 seconds or less : 60 seconds or less : 120±30 seconds : 3 times : 0.2 % (Wt.) or below	IR260
VPS	Peak temperature (package surface temperature) Time at temperature of 200°C or higher Preheating time at 120 to 150°C Maximum number of reflow processes Maximum chlorine content of rosin flux (% mass)	: 215°C or below : 25 to 40 seconds : 30 to 60 seconds : 3 times : 0.2 % (Wt.) or below	VP215
Wave soldering	Peak temperature (molten solder temperature) Time at peak temperature Preheating temperature (package surface temperature) Maximum number of reflow processes Maximum chlorine content of rosin flux (% mass)	: 260°C or below : 10 seconds or less : 120°C or below : 1 time : 0.2 % (Wt.) or below	WS260
Partial Heating	Peak temperature (pin temperature) Soldering time (per side of device) Maximum chlorine content of rosin flux (% mass)	: 350°C or below : 3 seconds or less : 0.2 % (Wt.) or below	HS350

Caution Do not use different soldering methods together (except for partial heating) .

4590 Patrick Henry Drive Santa Clara, CA 95054-1817 Telephone: (408) 919-2500

Facsimile: (408) 988-0279

Subject: Compliance with EU Directives

CEL certifies, to its knowledge, that semiconductor and laser products detailed below are compliant with the requirements of European Union (EU) Directive 2002/95/EC Restriction on Use of Hazardous Substances in electrical and electronic equipment (RoHS) and the requirements of EU Directive 2003/11/EC Restriction on Penta and Octa BDE.

CEL Pb-free products have the same base part number with a suffix added. The suffix –A indicates that the device is Pb-free. The –AZ suffix is used to designate devices containing Pb which are exempted from the requirement of RoHS directive (*). In all cases the devices have Pb-free terminals. All devices with these suffixes meet the requirements of the RoHS directive.

This status is based on CEL's understanding of the EU Directives and knowledge of the materials that go into its products as of the date of disclosure of this information.

Restricted Substance per RoHS	Concentration Limit per RoHS (values are not yet fixed)	Concentration in CEL	on contained devices	
Lead (Pb)	< 1000 PPM	-A -AZ Not Detected (*)		
Mercury	< 1000 PPM	Not Detected		
Cadmium	< 100 PPM	Not Detected		
Hexavalent Chromium	< 1000 PPM	Not Detected		
PBB	< 1000 PPM	Not Detected		
PBDE	< 1000 PPM	Not Detected		

If you should have any additional questions regarding our devices and compliance to environmental standards, please do not hesitate to contact your local representative.

Important Information and Disclaimer: Information provided by CEL on its website or in other communications concerting the substance content of its products represents knowledge and belief as of the date that it is provided. CEL bases its knowledge and belief on information provided by third parties and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. CEL has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. CEL and CEL suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall CEL's liability arising out of such information exceed the total purchase price of the CEL part(s) at issue sold by CEL to customer on an annual basis.

See CEL Terms and Conditions for additional clarification of warranties and liability.